

Elliptic Tales

[Elliptic Tales_下载链接1](#)

著者:Avner Ash

出版者:Princeton University Press

出版时间:2012-2-21

装帧:Hardcover

isbn:9780691151199

"Elliptic Tales" describes the latest developments in number theory by looking at one of the most exciting unsolved problems in contemporary mathematics - the Birch and Swinnerton-Dyer Conjecture. The Clay Mathematics Institute is offering a prize of \$1 million to anyone who can discover a general solution to the problem. In this book, Avner Ash and Robert Gross guide readers through the mathematics they need to understand this captivating problem. The key to the conjecture lies in elliptic curves, which are cubic equations in two variables. These equations may appear simple, yet they arise from some very deep--and often very mystifying - mathematical ideas. Using only basic algebra and calculus while presenting numerous eye-opening examples, Ash and Gross make these ideas accessible to general readers, and in the process venture to the very frontiers of modern mathematics. Along the way, they give an informative and entertaining introduction to some of the most profound discoveries of the last three centuries in algebraic geometry, abstract algebra, and number theory. They demonstrate how mathematics grows more abstract to tackle ever more challenging problems, and how each new generation of mathematicians builds on the accomplishments of those who preceded them. Ash and Gross fully explain how the Birch and Swinnerton-Dyer Conjecture sheds light on the number theory of elliptic curves, and how it provides a beautiful and startling connection between two very different objects arising from an elliptic curve, one based on calculus, the other on algebra.

作者介绍:

Avner Ash is professor of mathematics at Boston College. Robert Gross is associate professor of mathematics at Boston College. They are the coauthors of *Fearless Symmetry: Exposing the Hidden Patterns of Numbers* (Princeton).

目录: Cover
Half title
Title
Copyright
Dedication
Contents
Preface
Acknowledgments
Prologue
Part I. Degree
Chapter 1. Degree of a Curve
1. Greek Mathematics
2. Degree
3. Parametric Equations
4. Our Two Definitions of Degree Clash
Chapter 2. Algebraic Closures
1. Square Roots of Minus One
2. Complex Arithmetic
3. Rings and Fields
4. Complex Numbers and Solving Equations
5. Congruences
6. Arithmetic Modulo a Prime
7. Algebraic Closure
Chapter 3. The Projective Plane
1. Points at Infinity

- 2. Projective Coordinates on a Line
- 3. Projective Coordinates on a Plane
- 4. Algebraic Curves and Points at Infinity
- 5. Homogenization of Projective Curves
- 6. Coordinate Patches
- Chapter 4. Multiplicities and Degree
 - 1. Curves as Varieties
 - 2. Multiplicities
 - 3. Intersection Multiplicities
 - 4. Calculus for Dummies
- Chapter 5. Bézout's Theorem
 - 1. A Sketch of the Proof
 - 2. An Illuminating Example
- Part II. Elliptic Curves and Algebra
- Chapter 6. Transition to Elliptic Curves
- Chapter 7. Abelian Groups
 - 1. How Big Is Infinity?
 - 2. What Is an Abelian Group?
 - 3. Generations
 - 4. Torsion
 - 5. Pulling Rank
- Appendix: An Interesting Example of Rank and Torsion
- Chapter 8. Nonsingular Cubic Equations
 - 1. The Group Law
 - 2. Transformations
 - 3. The Discriminant
 - 4. Algebraic Details of the Group Law
 - 5. Numerical Examples
 - 6. Topology
 - 7. Other Important Facts about Elliptic Curves
 - 8. Two Numerical Examples
- Chapter 9. Singular Cubics
 - 1. The Singular Point and the Group Law
 - 2. The Coordinates of the Singular Point
 - 3. Additive Reduction
 - 4. Split Multiplicative Reduction
 - 5. Nonsplit Multiplicative Reduction
 - 6. Counting Points
 - 7. Conclusion
- Appendix A: Changing the Coordinates of the Singular Point
- Appendix B: Additive Reduction in Detail
- Appendix C: Split Multiplicative Reduction in Detail
- Appendix D: Nonsplit Multiplicative Reduction in Detail
- Chapter 10. Elliptic Curves Over \mathbb{Q}
 - 1. The Basic Structure of the Group
 - 2. Torsion Points
 - 3. Points of Infinite Order
 - 4. Examples
- Part III. Elliptic Curves and Analysis
- Chapter 11. Building Functions
 - 1. Generating Functions
 - 2. Dirichlet Series
 - 3. The Riemann Zeta-Function
 - 4. Functional Equations

5. Euler Products
6. Build Your Own Zeta-Function
Chapter 12. Analytic Continuation
1. A Difference that Makes a Difference
2. Taylor Made
3. Analytic Functions
4. Analytic Continuation
5. Zeroes, Poles, and the Leading Coefficient
Chapter 13. L-Functions
1. A Fertile Idea
2. The Hasse-Weil Zeta-Function
3. The L-Function of a Curve
4. The L-Function of an Elliptic Curve
5. Other L-Functions
Chapter 14. Surprising Properties of L-Functions
1. Compare and Contrast
2. Analytic Continuation
3. Functional Equation
Chapter 15. The Conjecture of Birch and Swinnerton-Dyer
1. How Big Is Big?
2. Influences of the Rank on the N_p 's
3. How Small Is Zero?
4. The BSD Conjecture
5. Computational Evidence for BSD
6. The Congruent Number Problem
Epilogue
Retrospect
Where Do We Go from Here?
Bibliography
Index
• • • • • (收起)

[Elliptic Tales_下载链接1](#)

标签

數學

number

近期待讀數學書

趣味

解析数论7

生活

测试

创意

评论

[Elliptic Tales_下载链接1](#)

书评

[Elliptic Tales_下载链接1](#)