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米兰·斯特瓦诺维奇编著的这本《高级C\C
编译技术》从多个角度全面、系统地讲解多任务操作系统中编译、链接、装载与库的内
幕和技术细节，为深入理解和掌握系统底层技术提供详实参考和实践指南。与纯粹讲解
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理论与技术细节的书不同。本书一方面对基本的理论进行了阐述，另一方面则聚焦于C
／C
使用静态库和动态库的一些注意事项，并举例说明如何解决实际的链接与装载问题。此
外，本书尽量使用通俗易懂的语言来阐述这些知识，并补充了大量示例，避免让读者整
天纠结于枯燥的理论。

本书共14章，其中第1章至第4章对多任务操作系统、程序生命周期以及代码重用等重
要概念进行介绍，为后续内容做铺垫；第5章介绍静态库的使用方法及其设计技巧；第6
章至第11章介绍动态库的相关概念，包括不同平台中动态库的技术细节，比如库文件定
位、引用解析与符号处理等，以及一些动态库设计的基本方法与原则和不同平台下应当
注意的设计细节；第12章至第14章主要给出一些实践方面的总结，便于读者快速查找
相关的概念，而且还总结了一些特定平台的二进制文件分析工具。
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评论

信息量还没国内那本大，错误也不少，不过可能是翻译编辑问题

-----------------------------
很一般的书，谈不上高级，很多工具和工程经验可以参照

-----------------------------
除了翻译以外，吐血推荐！

-----------------------------
还可以，市面上c++的此类书很少

-----------------------------
一本好书，看完就可以照着代码练习了，有折扣而且有货的时候可以入一本。

-----------------------------
讲真，这种类型的书对于我现在没有太大意义了。顶多就是遇到问题查阅下细节。不如
《程序员的自我修养》那本书好。



-----------------------------
内存结构与文件结构、动态库静态编译算是清除了 翻译的稍微有点儿奇怪 瑕不掩瑜

-----------------------------
动态库链接方面讲的比较好

-----------------------------
我一直不清楚程序究竟是如何运行起来的，很早以前我看书知道，C/C++
要经过预处理，编译，汇编，链接等步骤才能得到最终的可执行文件。这些年因为一直
从事在应用层面编程，对这些也没有做过研究。最近深究 C++ 和 Unix
环境，我觉得很有必要了解 C++
的编译和链接都做了些什么，以及操作系统如何加载可执行文件的。
这本书，正好是我需要的。本书讲解二进制文件的组成部分，编译和链接的过程，静态
链接和动态链接的原理和实现。写的很不错，只要了解虚拟存储器，具有一点 C 和 C++
的基础，知道汇编语言是咋回事，这本书就很容易读懂，没有什么难点。
有人提到翻译的问题，我觉得问题不大，至少我在读的时候，没有发现那里因翻译的不
好对理解有阻碍。我确实发现了一些翻译错误，仔细读d都能轻易发现这些错误。

-----------------------------
1-主要对C/C++的链接装载技术细节进行了阐述，以Linux平台的ELF为主，也介绍了Wi
ndows平台的一些工具与技术细节。和侧重理论和细节分析的《链接器与装载器》一书
不同，该书偏重于对概念进行形象的阐述，并介绍一些具体的工具和技术的使用方法与
注意事项。而且《链接器与装载器》很多内容过于陈旧（虽然讲了许多源头性的概念与
技术），相比来说此书则非常贴近现在的程序开发认知的。
2-内容有点啰嗦，繁琐，图很大，知识点不密集。第8、9章是最精华的部分。
3-两天看完（我是多年cpp程序员）

-----------------------------
翻译真心烂，很多地方都不知所云。

-----------------------------
收益很大，有一部分还是没明白。
详细从底层说明了程序设计，从最初的设计，一步一步说明如何修改，很好的一本书

-----------------------------
书中讲得浅显易懂，是本优秀的书

-----------------------------



刚转行时读的- -没怎么读懂

-----------------------------
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书评

我只看了三章试读,因为原书略口水,看不下去. 第三章3.1第三段第二行. 译文:
这么做的原因很可能是新进程的内存映射与shell的内存映射完全不同.
其实应该是:因为很可能新进程的存储map和shell的存储map几乎没有什么相同的地方.
42页中间部分涉及到一个kernel里的struct名字,我...  
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