

An Introduction to the Mechanical Properties of Solid Polymers

[An Introduction to the Mechanical Properties of Solid Polymers_下载链接1](#)

著者:Ward, I. M./ Sweeney, John

出版者:John Wiley & Sons Inc

出版时间:2004-5

装帧:Pap

isbn:9780471496267

Provides a comprehensive introduction to the mechanical behaviour of solid polymers. Extensively revised and updated throughout, the second edition now includes new material on mechanical relaxations and anisotropy, composites modelling, non-linear viscoelasticity, yield behaviour and fracture of tough polymers. The accessible approach of the book has been retained with each chapter designed to be self contained and the theory and applications of the subject carefully introduced where appropriate. The latest developments in the field are included alongside worked examples, mathematical appendices and an extensive reference.* Fully revised and updated throughout to include all the latest developments in the field* Worked examples at the end of the chapter* An invaluable resource for students of materials science, chemistry, physics or engineering studying polymer science

作者介绍:

目录: Preface xi

1 Structure of Polymers 1
1.1 Chemical composition 1
1.2 Physical structure 9
2 The Deformation of an Elastic Solid 19
2.1 The state of stress 19
2.2 The state of strain 20
2.3 The generalized Hooke' s law 24
2.4 Finite strain elasticity: the behaviour of polymers in the rubber-like state 25
3 Rubber-Like Elasticity 31
3.1 General features of rubber-like behaviour 31
3.2 The thermodynamics of deformation 33
3.3 The statistical theory 35
3.4 Modifications of the simple molecular network 43
3.5 Recent developments in the molecular theory of rubber elasticity 46
4 Principles of Linear Viscoelasticity 53
4.1 Viscoelasticity as a phenomenon 53
4.2 Mathematical representation of linear viscoelasticity 59
4.3 Dynamic mechanical measurements: the complex modulus and complex compliance 70
5 The Measurement of Viscoelastic Behaviour 79
5.1 Creep and stress relaxation 80
5.2 Dynamic mechanical measurements 83
5.3 Wave-propagation methods 88
6 Experimental Studies of Linear Viscoelastic Behaviour as a Function of Frequency and Temperature: Time-Temperature Equivalence 95
6.1 General introduction 95
6.2 Time-temperature equivalence and superposition 101
6.3 Molecular interpretations of time-temperature equivalence 104
6.4 Flexible molecular chain models 113
7 Anisotropic Mechanical Behaviour 121
7.1 Elastic constants and polymer symmetry 121
7.2 Measuring elastic constants 125
7.3 Experimental studies of mechanical anisotropy in oriented polymers 131
7.4 Interpretation of mechanical anisotropy: general considerations 139
7.5 Experimental studies of anisotropic mechanical behaviour and their interpretation 142
7.6 The aggregate model for chain-extended polyethylene and liquid crystalline

polymers	152
7.7 Auxetic materials: negative Poisson's ratio	157
8 Polymer Composites: Macroscale and Microscale	163
8.1 Composites: a general introduction	163
8.2 Mechanical anisotropy of polymer composites	164
8.3 Short fibre composites	170
8.4 Takayanagi models for semicrystalline polymers	174
8.5 Ultrahigh-modulus polyethylene	184
8.6 Conclusions	190
9 Relaxation Transitions: Experimental Behaviour and Molecular Interpretation	193
9.1 Amorphous polymers: an introduction	193
9.2 Factors affecting the glass transition in amorphous polymers	194
9.3 Relaxation transitions in crystalline polymers	202
9.4 Conclusions	216
10 Creep, Stress Relaxation and Non-linear Viscoelasticity	219
10.1 The engineering approach	220
10.2 The rheological approach	220
10.3 Creep and stress relaxations as thermally activated processes	231
11 Yielding and Instability in Polymers	241
11.1 Discussion of load–elongation curves in tensile testing	242
11.2 Ideal plastic behaviour	250
11.3 Historical development of understanding of the yield process	258
11.4 Experimental evidence for yield criteria in polymers	261
11.5 The molecular interpretations of yield and cold-drawing	266
11.6 Cold-drawing	268
12 Breaking Phenomena	273
12.1 Definition of tough and brittle behaviour in polymers	273
12.2 Principles of brittle fracture of polymers	274
12.3 Controlled fracture in brittle polymers	280
12.4 Crazing in glassy polymers	281
12.5 The structure and formation of crazes	286
12.6 Controlled fracture in tough polymers	296
12.7 The molecular approach	307
12.8 Factors influencing brittle–ductile behaviour: brittle–ductile transitions	310
12.9 The impact strength of polymers	315
12.10 The tensile strength and tearing of polymers in the rubbery state	325
12.11 Effect of strain rate and temperature	328
12.12 Fatigue in polymers	331
Appendix 1	341
A1.1 Scalars, vectors and tensors	341
A1.2 Tensor components of stress	341
A1.3 Tensor components of strain	342
A1.4 Generalized Hooke's law	342
A1.5 Engineering strains and matrix notation	343
A1.6 The elastic moduli of isotropic materials	345
A1.7 Transformation of tensors from one set of coordinate axes to another	347
A1.8 The Mohr circle construction	350
References	351
Appendix 2	353
A2.1 Rivlin, Mooney, Ogden	353
References	356
Answers to Problems	357
Index	377
• • • • • (收起)	

[An Introduction to the Mechanical Properties of Solid Polymers](#) [下载链接1](#)

标签

评论

[An Introduction to the Mechanical Properties of Solid Polymers](#) [下载链接1](#)

书评

[An Introduction to the Mechanical Properties of Solid Polymers](#) [下载链接1](#)