
Smoothness Priors Analysis of Time Series

Smoothness Priors Analysis of Time Series_下载链接1_

著者:Kitagawa, Genshiro/ Gersch, Will

出版者:Springer Verlag

出版时间:1996-8

装帧:Pap

isbn:9780387948195

Smoothness Priors Analysis of Time Series addresses some of the problems of modeling stationary and nonstationary time series primarily from a Bayesian stochastic regression "smoothness priors" state space point of view. Prior distributions on model coefficients are parametrized by hyperparameters. Maximizing the likelihood of a small number of hyperparameters permits the robust modeling of a time series with relatively complex structure and a very large number of implicitly inferred parameters. The critical statistical ideas in smoothness priors are the likelihood of the Bayesian model and the use of likelihood as a measure of the goodness of fit of the model. The emphasis is on a general state space approach in which the recursive conditional distributions for prediction, filtering, and smoothing are realized using a variety of nonstandard methods including numerical integration, a Gaussian mixture distribution-two filter smoothing formula, and a Monte Carlo "particle-path tracing" method in which the distributions are approximated by many realizations. The methods are applicable for modeling time series with complex structures.

methods are applicable for modeling time series with complex structures.
作者介绍:
目录:
Smoothness Priors Analysis of Time Series_下载链接1_
标签
评论
 Smoothness Priors Analysis of Time Series_下载链接1_
书评