

Ocean Biogeochemical Dynamics

[Ocean Biogeochemical Dynamics 下载链接1](#)

著者:Jorge L. Sarmiento

出版者:Princeton University Press

出版时间:2006-6-9

装帧:Hardcover

isbn:9780691017075

"Ocean Biogeochemical Dynamics" provides a broad theoretical framework upon which graduate students and upper-level undergraduates can formulate an understanding of the processes that control the mean concentration and distribution

of biologically utilized elements and compounds in the ocean. Though it is written as a textbook, it will also be of interest to more advanced scientists as a wide-ranging synthesis of our present understanding of ocean biogeochemical processes. The first two chapters of the book provide an introductory overview of biogeochemical and physical oceanography. The next four chapters concentrate on processes at the air-sea interface, the production of organic matter in the upper ocean, the remineralization of organic matter in the water column, and the processing of organic matter in the sediments. The focus of these chapters is on analyzing the cycles of organic carbon, oxygen, and nutrients. The next three chapters round out the authors' coverage of ocean biogeochemical cycles with discussions of silica, dissolved inorganic carbon and alkalinity, and CaCO_3 . The final chapter discusses applications of ocean biogeochemistry to our understanding of the role of the ocean carbon cycle in interannual to decadal variability, paleoclimatology, and the anthropogenic carbon budget. The problem sets included at the end of each chapter encourage students to ask critical questions in this exciting new field. While much of the approach is mathematical, the math is at a level that should be accessible to students with a year or two of college level mathematics and/or physics.

作者介绍:

目录: TABLE OF CONTENTS:

Preface xi

Chapter 1: Introduction 1

1.1 Chemical Composition of the Ocean 1

1.2 Distribution of Chemicals in the Ocean 7

1.3 Chapter Conclusion and Outline of Book 15

Problems 16

Chapter 2: Tracer Conservation and Ocean Transport 19

2.1 Tracer Conservation Equation 19

Advection and Diffusion Components 19

Application to Box Models 22

2.2 Wind-Driven Circulation 23

Equations of Motion 27

Ekman Transport 28

Gyre Circulation 30

2.3 Wind-Driven Circulation in the Stratified Ocean 33

Basic Concepts 34

Ocean Stratification 34

Geostrophic Equations 37

Gyre Circulation with Stratification 37

Insights from the Potential Vorticity Distribution 38

Insights from Tracers 39

Insights from the Thermal Wind Relationship 42

2.4 Deep Ocean Circulation 46

Observations 46

Models 52

Summary of Deep Ocean Circulation 57

2.5 Time-Varying Flows 59

Mesoscale Variability 60

Interannual to Decadal Variability 61

Tropical Variability 61

Extratropical Variability 66

Problems 69
Chapter 3: Air-Sea Interface 73
3.1 Introduction 73
3.2 Gas Solubilities 75
3.3 Gas Exchange 80
Stagnant Film Model 81
Laboratory Studies 83
Field Studies 86
Gas Transfer Velocity Models 89
3.4 Applications 95
Problems 100
Chapter 4: Organic Matter Production 102
4.1 Introduction 102
Nutrient Supply 105
Light 111
Efficiency of the Biological Pump 111
Outline 114
4.2 Ecosystem Processes 115
Nutrients 115
Composition of Organic Matter 115
Limiting Nutrient 117
Paradigm of Surface Ocean Nitrogen Cycling 117
Phytoplankton 123
Classification of Organisms 123
Phytoplankton Distribution and Productivity 128
Modeling Photosynthesis 131
Zooplankton 135
Bacteria 137
4.3 Analysis of Ecosystem Behavior 138
Role of Light Supply 139
Classical Ecosystem Models 142
N-P Model--Bottom-up Limitation 142
N-P-Z Model--Top-Down Limitation 144
Adding the Microbial Loop 146
Multiple Size Class Ecosystem Models 147
The Model 147
Influence of Micronutrients 149
Applications 150
North Pacific versus North Atlantic 152
Oligotrophic Region 155
4.4 A Synthesis 157
The Regeneration Loop 158
The Export Pathway 158
The Role of Iron 160
Conclusions 162
Problems 168
Chapter 5: Organic Matter Export and Remineralization 173
5.1 Introduction 173
Nutrient and Oxygen Distributions 173
Remineralizaton Reactions 178
Preformed and Remineralized Components 179
Dissolved and Particulate Organic Matter 180
Outline 181
5.2 Oxygen 181

Separation of Preformed and Remineralized Components	181
Deep Ocean Oxygen Utilization Rates	182
Thermocline Oxygen Utilization Rates	183
5.3 Nitrogen and Phosphorus	186
Stoichiometric Ratios	186
Phosphate	188
The Nitrogen Cycle	189
N^* as a Tracer of Denitrification	189
N^* as a Tracer of N ₂ Fixation	195
The Oceanic Nitrogen Budget	196
Nitrous Oxide	197
5.4 Organic Matter Cycling	200
Particulate Organic Matter	200
Overview	200
Particle Flux	203
The Role of Ballast	206
Particle Remineralization	207
Models of Particle Interactions	209
Dissolved Organic Matter	211
5.5 Models	215
Model Development	215
Sensitivity Studies	217
Applications: Control of Oceanic Oxygen	221
Problems	222
Chapter 6: Remineralization and Burial in the Sediments	227
6.1 Introduction	227
Observations	227
Sediment Properties and Processes	229
Remineralization Reactions	233
6.2 Sediment Diagenesis Models	236
Pore Waters	237
Solids	241
6.3 Remineralization	245
Oxic Sediments	246
Anoxic Sediments	250
Dissolved Organic Carbon	253
6.4 Burial	255
The Substrate	255
The Oxidant	256
Protection by Mineral Adsorption	257
Synthesis	258
6.5 Organic Matter Budget	260
Problems	267
Chapter 7: Silicate Cycle	270
7.1 Introduction	270
Water Column Observations	271
Sediment Observations	271
Outline	278
7.2 Euphotic Zone	278
Diatoms	278
Opal Production and Export	280
7.3 Water Column	285
Opal	286
Silicic Acid	288

7.4 Sediments	295
Opal Dissolution and Burial	295
Opal Chemistry	299
7.5 Conclusion	308
Overview	308
Marine Si Budget	309
Long-Term Homeostasis	311
Problems	313
Chapter 8: Carbon Cycle	318
8.1 Introduction	319
8.2 Inorganic Carbon Chemistry	322
8.3 The Surface Ocean	327
Annual Mean Distribution	327
Physical Processes	328
Biological Processes	331
Vector Diagrams	334
Seasonal Variability	335
Subtropical Gyres	337
North Atlantic	340
North Pacific	341
8.4 Water Column	342
Outline	342
Pump Components	342
The Biological Pumps	345
The Gas Exchange Pump	347
Global Mean	347
Atlantic versus Pacific	349
8.5 Carbon Pumps and Surface Fluxes	352
Problems	355
Chapter 9: Calcium Carbonate Cycle	359
9.1 Introduction	359
9.2 Production	362
Organisms	362
Export Estimates	363
Inorganic-to-Organic Carbon Export Ratio	363
9.3 Water Column Processes	365
CaCO ₃ Solubility	365
Variations in Saturation State	368
Carbonate Ion Distribution	368
Water Column Dissolution	371
9.4 Diagenesis	374
CaCO ₃ Dissolution in Sediments	374
Modeling CaCO ₃ Diagenesis	379
Model Applications	379
Concluding Remarks	384
9.5 Calcium Carbonate Compensation	384
CaCO ₃ Homeostat	384
CaCO ₃ Compensation	386
Problems	389
Chapter 10: Carbon Cycle, CO ₂ , and Climate	392
10.1 Introduction	392
Greenhouse Effect	394
Global Warming	396
Outline	398

10.2 The Anthropogenic Perturbation 399
Capacity Constraints 400
Buffering by Dissolved Carbonate 400
Buffering by Sediment CaCO₃ 401
Buffering by Weathering 402
Kinetic Constraints 402
Atmospheric Pulse Response 402
Ocean Uptake and Buffering with Dissolved Carbonate 403
Buffering by Sediment CaCO₃ 405
Anthropogenic CO₂ Uptake 405
Direct Estimation 406
Reconstruction of Anthropogenic CO₂ Inventory 408
The Atmospheric Oxygen Method 413
The Role of Biology 414
Future CO₂ Uptake 415
10.3 Interannual to Decadal Timescale Variability 417
Tropical Variability 419
Extratropical Variability 423
10.4 Glacial-Interglacial Atmospheric CO₂ Changes 429
Setting the Scene 431
Terrestrial Biosphere Carbon Loss 431
Salinity Changes 432
Temperature Changes 434
Fundamental Mechanisms 435
Southern Ocean Dominance 435
Equilibration of Low-Latitude Changes 436
Closing the Southern Ocean Window 440
Physical Mechanisms 442
Biological Mechanisms 443
Observational Constraints 444
A Role for the Regions outside the Southern Ocean? 446
Circulation Scenarios 447
Soft-Tissue Pump Scenarios 447
Alkalinity and Carbonate Pump Scenarios 449
A Synthesis Scenario 452
Problems 454
Appendix 459
References 461
Index 495
· · · · · (收起)

[Ocean Biogeochemical Dynamics 下载链接1](#)

标签

大学学习

地球

动力学

mar

评论

[Ocean Biogeochemical Dynamics 下载链接1](#)

书评

[Ocean Biogeochemical Dynamics 下载链接1](#)