

LED Lighting for Urban Agriculture

[LED Lighting for Urban Agriculture 下载链接1](#)

著者:Toyoki Kozai

出版者:Springer

出版时间:2016-11-17

装帧:平装

isbn:9789811018466

This book focuses on light-emitting diode (LED) lighting, mainly for the commercial production of horticultural crops in plant factories and greenhouses with controlled environments, giving special attention to: 1) plant growth and development as affected by the light environment; and 2) business and technological opportunities and challenges with regard to LEDs. The book contains more than 30 chapters grouped into seven parts: 1) overview of controlled-environment agriculture and its significance; 2) the effects of ambient light on plant growth and development; 3) optical and physiological characteristics of plant leaves and canopies; 4) greenhouse crop production with supplemental LED lighting; 5) effects of light quality on plant physiology and morphology; 6) current status of commercial plant factories under LED lighting; and 7) basics of LEDs and LED lighting for plant cultivation.

作者介绍:

Professor Kozai obtained a BS degree in Horticultural Sciences from Chiba University, and Master and Doctoral degrees in Agricultural Engineering from the University of Tokyo. When he started his academic career in 1973 as an agricultural engineer, his work was focused on greenhouse environment control engineering. After establishing his early work on greenhouse light environments, energy saving, ventilation and computer control, his scientific interest extended to in vitro environment control in plant tissue culture, sugar-free media and photoautotrophic micro-propagation, and plant production in closed systems with artificial lighting. His first paper on plant production using LED was published in the early 1990's.

Kazuhiro Fujiwara, Ph.D., Professor, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan

Erik S. Runkle, Ph.D., Professor, Department of Horticulture, Michigan State University, A240-C Plant & Soil Sciences Building, 1066 Bogue Street, East Lansing, MI 48824-132

目录: Part 1 Perspective and significance of LED lighting for urban agriculture.- 1. Why LED lighting for Urban Agriculture? (T. Kozai).
2. Integrated Urban Controlled Environment Agricultural Systems (IUCEAS) (KC Ting, T. Ling and Paul C. Davidson, University of Illinois).
3. Open-Source Agriculture Initiative - Food for the future? – (Caleb Harper, MIT).-Part 2 Plant growth and development as affected by light.
4. Some aspects of the light environment (T. Kozai and G. Zhang).
5. Light acts as a signal for regulation of growth and development (Y. Higuchi and T. Hisamatsu).
6. Factors affecting flowering seasonality (Y. Higuchi and T. Hisamatsu).-
7. Light environment in plant factory with LED lighting (T. Akiyama and T. Kozai).- Part 3 Optical and physiological characteristics of a plant leaf and a canopy (Editor: K. Fujiwara).-
8. Optical and physiological properties of a leaf (K. Murakami and R. Matsuda).-
9. Optical and physiological properties of a plant canopy (Y. Ibaraki).-
10. Evaluation of spatial light environment and plant canopy structure (Y. Ibaraki).-
11. Lighting efficiency in plant production under artificial lighting and plant growth modeling for evaluating the lighting efficiency (Y. Ibaraki).-
12. Effects of physical environment on photosynthesis, respiration, and transpiration (R. Matsuda).-
13. Air current around single leaves and plant canopies and its effect on transpiration, photosynthesis, and plant organ temperatures (Y. Kitaya).- Appendix: Equations used

in Part 3.- Part 4 Greenhouse crop production with supplemental LED lighting (Editor: E. Runkle).-

14. Control of Flowering Using Night-interruption and Day-extension LED Lighting (Q. Meng and E. Runkle).-

15. Control of morphology, quality and economic value by manipulating light quality (blue, red, and far-red light) and daily light integral (DLI) using LEDs (R. Lopez and J. Craver).-

16. Supplemental intra-canopy lighting with LEDs for fruit vegetables (N. Lu, C. Mitchell, E. Heuvelink, and T. Dueck).- Part 5 Light quality effects on plant physiology and morphology (Editor: T. Kozai).-

17. Effect of Light Quality on Secondary Metabolite Production in Leafy Greens and Seedlings (H. Shimizu).-

18. Induction of plant disease resistance and other physiological responses by green light illumination (R. Kudou and K. Yamamoto).-

19. Light quality effects on intumescence (oedema) on leaves (K. Williams, C.T. Miller and J.K. Craver).- Part 6 Current status of commercial plant factories with LED lighting (T. Kozai).-

20. Business models for plant factories using artificial light (PFALs) in Taiwan (Wei Fang, National Taiwan University).-

21. Current status in Asia, Europe and other regions (E. Hayashi).-

22. Current status in Americas, (C Higgins).-

23. Economic analysis and market creation for PFALs (E. Hayashi).-

24. Consumer perception and understanding of vegetables produced at plant factories with artificial lighting (Y. Yano, T. Nakamura and A. Maruyama).-

Part 7 Basics of LEDs and LED lighting systems for plant cultivation (Editor: K. Fujiwara).-

25. Radiometric, photometric, and photometric quantities and their units (K. Fujiwara).-

26. Basics of LEDs for plant cultivation (K. Fujiwara).-

27. Measurement of photometric and radiometric characteristics of LEDs for plant cultivation (E. Goto).-

28. Configuration, function and operation of LED lighting systems (A. Yano).-

29. Energy balance and energy conversion process of LEDs and LED lighting systems (A. Yano).-

30. Health effects of occupational exposure to LED light: A special reference to plant cultivation works in plant factories (M. Takao).-

31. Moving toward Self-Learning Closed Plant Production Systems (T. Kozai, and K. Fujiwara).

• (收起)

[LED Lighting for Urban Agriculture](#) [_下载链接1](#)

标签

照明

评论

[LED Lighting for Urban Agriculture 下载链接1](#)

书评

[LED Lighting for Urban Agriculture 下载链接1](#)