

FINITE ELEMENT ANALYSIS

[FINITE ELEMENT ANALYSIS 下载链接1](#)

著者:Nicholson, David W.

出版者:

出版时间:

装帧:

isbn:9781420050950

Explore a Unified Treatment of the Finite Element Method

The finite element method has matured to the point that it can accurately and reliably be used, by a careful analyst, for an amazingly wide range of applications. With expanded coverage and an increase in fully solved examples, the second edition of *Finite Element Analysis: Thermomechanics of Solids* presents a unified treatment of the finite element method in thermomechanics, from the basics to advanced concepts.

作者介绍:

目录: Introduction To The Finite Element Method

Introduction

Overview of the Finite Element Method

Mesh Development

Mathematical Foundations: Vectors and Matrices

Introduction

Vectors

Matrices

Eigenvalues and Eigenvectors

Coordinate Transformations

Orthogonal Curvilinear Coordinates

Gradient Operator in Orthogonal Coordinates

Divergence and Curl of Vectors in Orthogonal Coordinates

Appendix: Divergence and Curl of Vectors in Orthogonal Curvilinear Coordinates

Mathematical Foundations: Tensors

Tensors

Divergence of a Tensor

Invariants

Positive Definiteness

Polar Decomposition Theorem

Kronecker Products of Tensors

Examples

Introduction to Variational Methods

Introductory Notions

Properties of the Variational Operator

Example: Variational Equation for a Cantilevered Elastic Rod

Higher Order Variations

Examples

Fundamental Notions of Linear Solid Mechanics

The Displacement Vector

The Linear Strain and Rotation Tensors

Examples of Linear Strain and Rotation Tensors

Traction and Stress

Equilibrium

Stress and Strain Transformations

Principal Stresses and Strains

Stress Strain Relations

Principle of Virtual Work in Linear Elasticity

Thermal and Thermomechanical Response

Balance of Energy and Production of Entropy

Classical Coupled Linear Thermoelasticity

Thermal and Thermomechanical Analogs of the Principle of Virtual Work and Associated Finite Element Equations
One-Dimensional Elastic Elements
Interpolation Models for One Dimensional Elements
Strain-Displacement Relations in One Dimensional Elements
Stress-Strain Relations in One Dimensional Elements
Element Mass and Stiffness Matrices from the Principle of Virtual Work
Integral Evaluation by Gaussian Quadrature: Natural Coordinates
Unconstrained Rod Elements
Unconstrained Elements for Beams and Beam-Columns
Assemblage and Imposition of Constraints
Damping in Rods and Beams
General Discussion of Assemblage
General Discussion of the Imposition of Constraints
Inverse Variational Method
Two- and Three-Dimensional Elements in Linear Elasticity and Linear Conductive Heat Transfer
Two Dimensions
Interpolation Models in Three Dimensions
Strain Displacement Relations and Thermal Analogs
Stress-Strain Relations
Stiffness and Mass Matrices and Their Thermal Analogs
Thermal Counterpart of the Principle of Virtual Work
Conversion to Natural Coordinates in Two and Three Dimensions
Assembly of Two and Three Dimensional Elements
Solution Methods for Linear Problems - I
Numerical Methods in FEA
Time Integration: Stability and Accuracy
Properties of the Trapezoidal Rule
Integral Evaluation by Gaussian Quadrature
Modal Analysis by FEA
Solution Methods for Linear Problems -II
Introduction
Solution Method for an Inverse Problem
Accelerated Eigenstructure Computation in FEA
Fourth Order Time Integration
Additional Topics in Linear Thermoelastic Systems
Transient Conductive Heat Transfer in Linear Media
Coupled Linear Thermoelasticity
Incompressible Elastic Media
Torsion of Prismatic Bars
Buckling of Elastic Beams and Plates
Introduction to Contact Problems
Rotating and Unrestrained Elastic Bodies
Finite Elements in Rotation
Critical Speeds in Shaft-Rotor Shaft
Finite Element Analysis for Unconstrained Elastic Bodies
Appendix: Angular Velocity Vector in Spherical Coordinates
Aspects on Nonlinear Continuum Thermomechanics
Introduction
Nonlinear Kinematics of Deformation
Mechanical Equilibrium and the Principle of Virtual Work
Principle of Virtual Work Under Large Deformation
Nonlinear Stress-Strain-Temperature Relations: The Isothermal Tangent Modulus

Tensor
Introduction to Nonlinear FEA
Introduction
Types of Nonlinearity
Newton Iteration
Combined Incremental and Iterative Methods: A Simple Example
Finite Stretching of a Rubber Rod Under Gravity
Newton Iteration Near a Critical Point
Introduction to the Arc Length Method
Incremental Principle of Virtual Work
Incremental Kinematics
Stress Increments
Incremental Equation of Balance of Linear Momentum
Incremental Principle of Virtual Work
Incremental Finite Element Equation
Contributions From Nonlinear Boundary Conditions
Effect of Variable Contact
Interpretation as Newton Iteration
Buckling
Tangent Modulus Tensors for Thermomechanical Response of Elastomers
Introduction
Compressible Elastomers
Incompressible and Near-Incompressible Elastomers
Stretch-Ration Based Models: Isothermal Conditions
Extension to Thermohyperelastic Materials
Thermomechanics of Damped Elastomers
Constitutive Model in Thermoviscohyperelasticity
Variational Principles and Finite Element Equations for A Thermoviscohyperelastic Material
Tangent Modulus Tensors for Inelastic and Thermoelastic Materials
Plasticity
Tangent Modulus Tensor in Small Strain Isothermal Plasticity
Plasticity Under Finite Strain
Thermoplasticity
Tangent Modulus Tensor in Viscoplasticity
Continuum Damage Mechanics
Selected Advanced Numerical Methods in FEA
Iterative Triangularization of Perturbed Matrices
Stiff Arc Length Constraint in Nonlinear FEA
Non-Iterative Solution of Finite Element Equations in Incompressible Solids
References
Index
· · · · · (收起)

[FINITE ELEMENT ANALYSIS_下载链接1](#)

标签

评论

[FINITE ELEMENT ANALYSIS 下载链接1](#)

书评

[FINITE ELEMENT ANALYSIS 下载链接1](#)