

A First Course in General Relativity

[A First Course in General Relativity 下载链接1](#)

著者:Bernard Schutz

出版者:Cambridge University Press

出版时间:2009-6-22

装帧:Hardcover

isbn:9780521887052

Clarity, readability, and rigor combine in the second edition of this widely used textbook to provide the first step into general relativity for undergraduate students with a minimal background in mathematics.

Topics within relativity that fascinate astrophysical researchers and students alike are covered with Schutz's characteristic ease and authority – from black holes to gravitational lenses, from pulsars to the study of the Universe as a whole. This edition now contains recent discoveries by astronomers that require general relativity for their explanation; a revised chapter on relativistic stars, including new information on pulsars; an entirely rewritten chapter on cosmology; and an extended, comprehensive treatment of modern gravitational wave detectors and expected sources.

作者介绍:

Bernard Schutz is Director of the Max Planck Institute for Gravitational Physics, a Professor at Cardiff University, UK, and an Honorary Professor at the University of Potsdam and the University of Hannover, Germany. He is also a Principal Investigator of the GEO600 detector project and a member of the Executive Committee of the LIGO Scientific Collaboration. Professor Schutz has been awarded the Amaldi Gold Medal of the Italian Society for Gravitation.

目录:

1 Special relativity 1

- 1.1 Fundamental principles of special relativity (SR) theory 1
- 1.2 Definition of an inertial observer in SR 3
- 1.3 New units 4
- 1.4 Spacetime diagrams 5
- 1.5 Construction of the coordinates used by another observer 6
- 1.6 Invariance of the interval 9
- 1.7 Invariant hyperbolae 14
- 1.8 Particularly important results 17
- 1.9 The Lorentz transformation 21
- 1.10 The velocity-composition law 22
- 1.11 Paradoxes and physical intuition 23
- 1.12 Further reading 24
- 1.13 Appendix: The twin ‘paradox’ dissected 25
- 1.14 Exercises 28

- 2 Vector analysis in special relativity 33
- 2.1 Definition of a vector 33
- 2.2 Vector algebra 36
- 2.3 The four-velocity 41
- 2.4 The four-momentum 42
- 2.5 Scalar product 44
- 2.6 Applications 46
- 2.7 Photons 49
- 2.8 Further reading 50
- 2.9 Exercises 50

- 3 Tensor analysis in special relativity 56
- 3.1 The metric tensor 56
- 3.2 Definition of tensors 56
- 3.3 The (0,1) tensors: one-forms 58
- 3.4 The (0,2) tensors 66
- 3.5 Metric as a mapping of vectors into one-forms 68
- 3.6 Finally: (M,N) tensors 72
- 3.7 Index ‘raising’ and ‘lowering’ 74
- 3.8 Differentiation of tensors 76
- 3.9 Further reading 77

3.10 Exercises	77
4 Perfect fluids in special relativity	84
4.1 Fluids	84
4.2 Dust: the number-flux vector N	85
4.3 One-forms and surfaces	88
4.4 Dust again: the stress-energy tensor	91
4.5 General fluids	93
4.6 Perfect fluids	100
4.7 Importance for general relativity	104
4.8 Gauss' law	105
4.9 Further reading	106
4.10 Exercises	107
5 Preface to curvature	111
5.1 On the relation of gravitation to curvature	111
5.2 Tensor algebra in polar coordinates	118
5.3 Tensor calculus in polar coordinates	125
5.4 Christoffel symbols and the metric	131
5.5 Noncoordinate bases	135
5.6 Looking ahead	138
5.7 Further reading	139
5.8 Exercises	139
6 Curved manifolds	142
6.1 Differentiable manifolds and tensors	142
6.2 Riemannian manifolds	144
6.3 Covariant differentiation	150
6.4 Parallel-transport, geodesics, and curvature	153
6.5 The curvature tensor	157
6.6 Bianchi identities: Ricci and Einstein tensors	163
6.7 Curvature in perspective	165
6.8 Further reading	166
6.9 Exercises	166
7 Physics in a curved spacetime	171
7.1 The transition from differential geometry to gravity	171
7.2 Physics in slightly curved spacetimes	175
7.3 Curved intuition	177
7.4 Conserved quantities	178
7.5 Further reading	181
7.6 Exercises	181
8 The Einstein field equations	184
8.1 Purpose and justification of the field equations	184
8.2 Einstein's equations	187
8.3 Einstein's equations for weak gravitational fields	189
8.4 Newtonian gravitational fields	194
8.5 Further reading	197
8.6 Exercises	198
9 Gravitational radiation	203
9.1 The propagation of gravitational waves	203
9.2 The detection of gravitational waves	213
9.3 The generation of gravitational waves	227
9.4 The energy carried away by gravitational waves	234
9.5 Astrophysical sources of gravitational waves	242
9.6 Further reading	247
9.7 Exercises	248
10 Spherical solutions for stars	256

10.1 Coordinates for spherically symmetric spacetimes	256
10.2 Static spherically symmetric spacetimes	258
10.3 Static perfect fluid Einstein equations	260
10.4 The exterior geometry	262
10.5 The interior structure of the star	263
10.6 Exact interior solutions	266
10.7 Realistic stars and gravitational collapse	269
10.8 Further reading	276
10.9 Exercises	277
11 Schwarzschild geometry and black holes	281
11.1 Trajectories in the Schwarzschild spacetime	281
11.2 Nature of the surface $r = 2M$	298
11.3 General black holes	304
11.4 Real black holes in astronomy	318
11.5 Quantum mechanical emission of radiation by black holes: the Hawking process	323
11.6 Further reading	327
11.7 Exercises	328
12 Cosmology	335
12.1 What is cosmology?	335
12.2 Cosmological kinematics: observing the expanding universe	337
12.3 Cosmological dynamics: understanding the expanding universe	353
12.4 Physical cosmology: the evolution of the universe we observe	361
12.5 Further reading	369
12.6 Exercises	370
Appendix A Summary of linear algebra	374
References	378
Index	386
• • • • • (收起)	

[A First Course in General Relativity](#) [下载链接1](#)

标签

物理

相对论

Physics

广义相对论

GR

教材

英语

physics

评论

这本书里面错误非常多，特别是第9章。特别奇怪，Schutz是专门研究引力波的，但是偏偏引力波这一章节里错误很多。 ----
备注：忘记把在读改为已读了

really nice and friendly book

这本推导不是很仔细，不适合研究生用。

证明没细看当科普，的确解释得很清晰可以当作科普书。

数学看得费劲得很……

太简略了，证明少得可怜，还不如直接上MTW 或者 Weinberg

假期最后几天把这本书最后一点点给啃下，总体来说这本书的亮点在于前面几章，入门方式非常友好，但是后面的推导很不仔细，跳步骤很厉害，从爱因斯坦场方程开始建议切换到Carroll的那个lecture note

翻过

用来入门最好的教材，不过深入学习还得再看更高等的书。亮点是前几张数学铺垫，可谓贴心～

思路清晰，讲解细致，深入浅出。特别是讲张量和曲率的部分，把晕乎乎的上下标理得明明白白，是期末急救党的福音。

[A First Course in General Relativity](#) [下载链接1](#)

书评

非常棒的一本广相书，美中不足就是到后面感觉不如前面那种慢慢过关斩将，一步步走近大师的理论的感觉。如果仔细看的话，全书最精彩的大头便是微分几何与张量分析（虽然占了很大篇幅，但并不是啰嗦，如果你和同类书去比的话，你会发现大多在第四第五章就涉足场方程了，而这本书...

[A First Course in General Relativity](#) [下载链接1](#)