

Lectures on Quantum Mechanics for Mathematics Students

[Lectures on Quantum Mechanics for Mathematics Students 下载链接1](#)

著者:L. D. Faddeev

出版者:American Mathematical Society

出版时间:2009-03-09

装帧:Paperback

isbn:9780821846995

This book is based on notes from the course developed and taught for more than 30 years at the Department of Mathematics of Leningrad University. The goal of the course was to present the basics of quantum mechanics and its mathematical content to students in mathematics. This book differs from the majority of other textbooks on the subject in that much more attention is paid to general principles of quantum mechanics. In particular, the authors describe in detail the relation between classical and quantum mechanics. When selecting particular topics, the authors emphasize those that are related to interesting mathematical theories. In particular, the book contains a discussion of problems related to group representation theory and to scattering theory.

This book is rather elementary and concise, and it does not require prerequisites beyond the standard undergraduate mathematical curriculum. It is aimed at giving a mathematically oriented student the opportunity to grasp the main points of quantum theory in a mathematical framework.

作者介绍:

L. D. Faddeev: Steklov Mathematical Institute, St. Petersburg, Russia,

O. A. Yakubovski: St. Petersburg University, St. Petersburg, Russia

with an appendix by Leon Takhtajan

目录: Cover 1

Title page 5

Contents 8

Preface 12

Preface to the English edition 14

The algebra of observables in classical mechanics 16

States 21

Liouville's theorem, and two pictures of motion in classical mechanics 28

Physical bases of quantum mechanics 30

A finite-dimensional model of quantum mechanics 42

States in quantum mechanics 47

Heisenberg uncertainty relations 51

Physical meaning of the eigenvalues and eigenvectors of observables 54

Two pictures of motion in quantum mechanics. The Schrödinger equation. Stationary states 59

Quantum mechanics of real systems. The Heisenberg commutation relations 64

Coordinate and momentum representations 69

“Eigenfunctions” of the operators and 75

The energy, the angular momentum, and other examples of observables 78

The interconnection between quantum and classical mechanics. Passage to the limit from quantum mechanics to classical mechanics 84

One-dimensional problems of quantum mechanics. A free one-dimensional particle 92

The harmonic oscillator 98

The problem of the oscillator in the coordinate representation 102

Representation of the states of a one-dimensional particle in the sequence space

105

Representation of the states for a one-dimensional particle in the space of entire analytic functions 109

The general case of one-dimensional motion 110
Three-dimensional problems in quantum mechanics. A three-dimensional free particle 118
A three-dimensional particle in a potential field 119
Angular momentum 121
The rotation group 123
Representations of the rotation group 126
Spherically symmetric operators 129
Representation of rotations by 2×2 unitary matrices 132
Representation of the rotation group on a space of entire analytic functions of two complex variables 135
Uniqueness of the representations 138
Representations of the rotation group on the space $S^2(2)$. Spherical functions 142
The radial Schrödinger equation 145
The hydrogen atom. The alkali metal atoms 151
Perturbation theory 162
The variational principle 169
Scattering theory. Physical formulation of the problem 172
Scattering of a one-dimensional particle by a potential barrier 174
Physical meaning of the solutions 179
Scattering by a rectangular barrier 182
Scattering by a potential center 184
Motion of wave packets in a central force field 190
The integral equation of scattering theory 196
Derivation of a formula for the cross-section 198
Abstract scattering theory 203
Properties of commuting operators 212
Representation of the state space with respect to a complete set of observables 216
Spin 218
Spin of a system of two electrons 223
Systems of many particles. The identity principle 227
Symmetry of the coordinate wave functions of a system of two electrons. The helium atom 230
Multi-electron atoms. One-electron approximation 232
The self-consistent field equations 238
Mendeleev's periodic system of the elements 241
Lagrangian formulation of classical mechanics 246
Back Cover 252
• • • • • (收起)

[Lectures on Quantum Mechanics for Mathematics Students](#) [下载链接1](#)

标签

物理

数学

量子力学7

量子力学

物理学

俄国

QT

Faddeev

评论

By far the best mathematical introduction to QM

[Lectures on Quantum Mechanics for Mathematics Students](#) [下载链接1](#)

书评

[Lectures on Quantum Mechanics for Mathematics Students](#) [下载链接1](#)