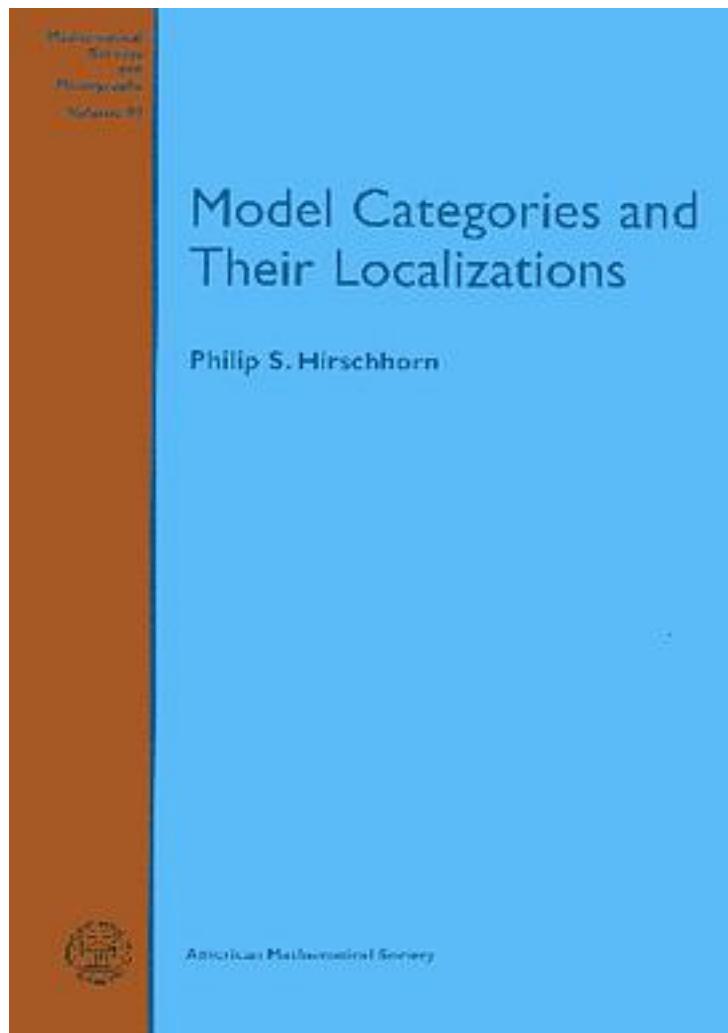


Model Categories and Their Localizations



[Model Categories and Their Localizations](#) [下载链接1](#)

著者:Philip S. Hirschhorn

出版者:American Mathematical Society

出版时间:2003

装帧:

isbn:9780821832790

The aim of this book is to explain modern homotopy theory in a manner accessible to

graduate students yet structured so that experts can skip over numerous linear developments to quickly reach the topics of their interest. Homotopy theory arises from choosing a class of maps, called weak equivalences, and then passing to the homotopy category by localizing with respect to the weak equivalences, i.e., by creating a new category in which the weak equivalences are isomorphisms. Quillen defined a model category to be a category together with a class of weak equivalences and additional structure useful for describing the homotopy category in terms of the original category. This allows you to make constructions analogous to those used to study the homotopy theory of topological spaces.

A model category has a class of maps called weak equivalences plus two other classes of maps, called cofibrations and fibrations. Quillen's axioms ensure that the homotopy category exists and that the cofibrations and fibrations have extension and lifting properties similar to those of cofibration and fibration maps of topological spaces. During the past several decades the language of model categories has become standard in many areas of algebraic topology, and it is increasingly being used in other fields where homotopy theoretic ideas are becoming important, including modern algebraic K-theory and algebraic geometry.

All these subjects and more are discussed in the book, beginning with the basic definitions and giving complete arguments in order to make the motivations and proofs accessible to the novice. The book is intended for graduate students and research mathematicians working in homotopy theory and related areas.

作者介绍:

Philip S. Hirschhorn is a mathematician at Wellesley College.

目录: Contents 6

Introduction 10

Model categories and their homotopy categories 10

Localizing model category structures 12

Acknowledgments 16

Part 1. Localization of Model Category Structures 18

Summary of Part 1 20

Chapter 1. Local Spaces and Localization 22

1.1. Definitions of spaces and mapping spaces 22

1.2. Local spaces and localization 25

1.3. Constructing an f -localization functor 33

1.4. Concise description of the f -localization 37

1.5. Postnikov approximations 39

1.6. Topological spaces and simplicial sets 41

1.7. A continuous localization functor 46

1.8. Pointed and unpointed localization 48

Chapter 2. The Localization Model Category for Spaces 52

2.1. The Bousfield localization model category structure 52

2.2. Subcomplexes of relative $\wedge\{f\}$ -cell complexes 54

2.3. The Bousfield-Smith cardinality argument 59

Chapter 3. Localization of Model Categories 64

3.1. Left localization and right localization 64

3.2. C-local objects and C-local equivalences 68

3.3. Bousfield localization 74

3.4. Bousfield localization and properness	82
3.5. Detecting equivalences	85
Chapter 4. Existence of Left Bousfield Localizations	88
4.1. Existence of left Bousfield localizations	88
4.2. Horns on S and S-local equivalences	90
4.3. A functorial localization	91
4.4. Localization of subcomplexes	93
4.5. The Bousfield-Smith cardinality argument	95
4.6. Proof of the main theorem	98
Chapter 5. Existence of Right Bousfield Localizations	100
5.1. Right Bousfield localization: Cellularization	100
5.2. Horns on K and K-colocal equivalences	102
5.3. K-colocal cofibrations	104
5.4. Proof of the main theorem	106
5.5. K-colocal objects and K-cellular objects	107
Chapter 6. Fiberwise Localization	110
6.1. Fiberwise localization	110
6.2. The fiberwise local model category structure	112
6.3. Localizing the fiber	112
6.4. Uniqueness of the fiberwise localization	115
Part 2. Homotopy Theory in Model Categories	118
Summary of Part 2	120
Chapter 7. Model Categories	124
7.1. Model categories	125
7.2. Lifting and the retract argument	127
7.3. Homotopy	132
7.4. Homotopy as an equivalence relation	136
7.5. The classical homotopy category	139
7.6. Relative homotopy and fiberwise homotopy	142
7.7. Weak equivalences	146
7.8. Homotopy equivalence	147
7.9. The equivalence relation generated by "weak equivalence"	150
7.10. Topological spaces and simplicial sets	151
Chapter 8. Fibrant and Cofibrant Approximations	154
8.1. Fibrant and cofibrant approximations	155
8.2. Approximations and homotopic maps	161
8.3. The homotopy category of a model category	164
8.4. Derived functors	168
8.5. Quillen functors and total derived functors	170
Chapter 9. Simplicial Model Categories	176
9.1. Simplicial model categories	176
9.2. Colimits and limits	180
9.3. Weak equivalences of function complexes	181
9.4. Homotopy lifting	184
9.5. Simplicial homotopy	187
9.6. Uniqueness of lifts	192
9.7. Detecting weak equivalences	194
9.8. Simplicial functors	196
Chapter 10. Ordinals, Cardinals, and Transfinite Composition	202
10.1. Ordinals and cardinals	203
10.2. Transfinite composition	205
10.3. Transfinite composition and lifting in model categories	210
10.4. Small objects	211
10.5. The small object argument	213

10.6. Subcomplexes of relative I-cell complexes	218
10.7. Cell complexes of topological spaces	221
10.8. Compactness	223
10.9. Effective monomorphisms	225
Chapter 11. Cofibrantly Generated Model Categories	226
11.1. Cofibrantly generated model categories	227
11.2. Cofibrations in a cofibrantly generated model category	228
11.3. Recognizing cofibrantly generated model categories	230
11.4. Compactness	232
11.5. Free cell complexes	234
11.6. Diagrams in a cofibrantly generated model category	241
11.7. Diagrams in a simplicial model category	242
11.8. Overcategories and undercategories	243
11.9. Extending diagrams	245
Chapter 12. Cellular Model Categories	248
12.1. Cellular model categories	248
12.2. Subcomplexes in cellular model categories	249
12.3. Compactness in cellular model categories	251
12.4. Smallness in cellular model categories	252
12.5. Bounding the size of cell complexes	253
Chapter 13. Proper Model Categories	256
13.1. Properness	256
13.2. Properness and lifting	260
13.3. Homotopy pullbacks and homotopy fiber squares	261
13.4. Homotopy fibers	266
13.5. Homotopy pushouts and homotopy cofiber squares	267
Chapter 14. The Classifying Space of a Small Category	270
14.1. The classifying space of a small category	271
14.2. Cofinal functors	273
14.3. Contractible classifying spaces	275
14.4. Uniqueness of weak equivalences	277
14.5. Categories of functors	280
14.6. Cofibrant approximations and fibrant approximations	283
14.7. Diagrams of undercategories and overcategories	285
14.8. Free cell complexes of simplicial sets	288
Chapter 15. The Reedy Model Category Structure	294
15.1. Reedy categories	295
15.2. Diagrams indexed by a Reedy category	298
15.3. The Reedy model category structure	305
15.4. Quillen functors	311
15.5. Products of Reedy categories	311
15.6. Reedy diagrams in a cofibrantly generated model category	313
15.7. Reedy diagrams in a cellular model category	319
15.8. Bisimplicial sets	320
15.9. Cosimplicial simplicial sets	322
15.10. Cofibrant constants and fibrant constants	325
15.11. The realization of a bisimplicial set	329
Chapter 16. Cosimplicial and Simplicial Resolutions	334
16.1. Resolutions	335
16.2. Quillen functors and resolutions	340
16.3. Realizations	341
16.4. Adjointness	343
16.5. Homotopy lifting extension theorems	348
16.6. Frames	354

16.7. Reedy frames	359
Chapter 17. Homotopy Function Complexes	364
17.1. Left homotopy function complexes	366
17.2. Right homotopy function complexes	367
17.3. Two-sided homotopy function complexes	369
17.4. Homotopy function complexes	371
17.5. Functorial homotopy function complexes	374
17.6. Homotopic maps of homotopy function complexes	379
17.7. Homotopy classes of maps	382
17.8. Homotopy orthogonal maps	384
17.9. Sequential colimits	393
Chapter 18. Homotopy Limits in Simplicial Model Categories	396
18.1. Homotopy colimits and homotopy limits	397
18.2. The homotopy limit of a diagram of spaces	400
18.3. Coends and ends	402
18.4. Consequences of adjoint ness	406
18.5. Homotopy invariance	411
18.6. Simplicial objects and cosimplicial objects	412
18.7. The Bousfield-Kan map	413
18.8. Diagrams of pointed or unpointed spaces	415
18.9. Diagrams of simplicial sets	417
Chapter 19. Homotopy Limits in General Model Categories	422
19.1. Homotopy colimits and homotopy limits	422
19.2. Coends and ends	424
19.3. Consequences of adjoint ness	428
19.4. Homotopy invariance	431
19.5. Homotopy pullbacks and homotopy pushouts	433
19.6. Homotopy cofinal functors	435
19.7. The Reedy diagram homotopy lifting extension theorem	440
19.8. Realizations and total objects	443
19.9. Reedy cofibrant diagrams and Reedy fibrant diagrams	444
Index	446
Bibliography	472
• • • • • (收起)	

[Model Categories and Their Localizations](#) [下载链接1](#)

标签

Mathematics

评论

[Model Categories and Their Localizations](#) [下载链接1](#)

书评

[Model Categories and Their Localizations](#) [下载链接1](#)