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The aim of this book is to explain modern homotopy theory in a manner accessible to
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raduate students yet structured so that experts can skip over numerous linear

evelopments to quickly reach the topics of their interest. Homotopy theory arises
from choosing a class of maps, called weak equivalences, and then passing to the
homotopy category by localizing with respect to the weak equivalences, i.e., by
creating a new category in which the weak equivalences are isomorphisms. Quillen
defined a model category to be a category together with a class of weak equivalences
and additional structure useful for describing the homotopy category in terms of the
original category. This aHovvsTyou to make constructions analogous to those used to
study the homotopy theory of topological spaces.

A model category has a class of maps called weak equivalences plus two other classes
of maps, called cofibrations and fibrations. Quillen's axioms ensure that the homotopy
category exists and that the cofibrations and fibrations have extension and lifting
properties similar to those of cofibration and fibration maps of topological spaces.
During the past several decades the language of model categories has become
standard in many areas of algebraic topology, and it is increasingly being used in other
fields where homotopg/ theoretic ideas are becoming important, including modern
algebraic K-theory and algebraic geometry.

All these subjects and more are discussed in the book, beginning with the basic
definitions and giving complete arguments in order to make the motivations and
proofs accessible to the novice. The book is intended for graduate students and
research mathematicians working in homotopy theory and related areas.
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Philip S. Hirschhorn is a mathematician at Wellesley College.
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