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Although number theorists have sometimes shunned and even disparaged
computation in the past, today's apﬁlications of number theory to cryptography and
computer security demand vast arithmetical comﬁutations. These demands have
shifted the focus of studies in number theory and have changed attitudes toward
computation itself.

The important new applications have attracted a great many students to number
theory, but the best reason for studying the subject remains what it was when Gauss
published his classic Disquisitiones Arithmeticae in 1801: Number theory is the equal of
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Fuclidean geometry—some would say it is superior to Euclidean geometry—as a
model of pure, logical, deductive thinking. An arithmetical computation, after all, is the
purest form of deductive argument.

Higher Arithmetic explains number theory in a way that gives deductive reasoning,
including algorithms and computations, the central role. Hands-on experience with the
application of algorithms to computational examples enables students to master the
fundamental ideas of basic number theory. This is a worthwhile goal for any student of
mathematics and an essential one for students interested in the modern applications
of number theory.
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