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This book provides an innovative and mathematically sound treatment of the
foundations of analytical mechanics and the relation of classical mechanics to
relativity and quantum theory. Itis intended for use at the introductory graduate level.
A distinguishing feature of the book is its integration of special relativity into teaching
of classical mechanics. After a thorough review of the traditional theory, Part Il of the
book introduces extended Lagrangian and Hamiltonian methods that treat time as a
transformable coordinate rather than the fixed parameter of Newtonian physics.
Advanced topics such as covariant Langrangians and Hamiltonians, canonical
transformations, and Hamilton-Jacobi methods are simplified by the use of this
extended theory. And the definition of canonical transformation no longer excludes the
Lorenz transformation of special relativity. This is also a book for those who study
analytical mechanics to prepare for a critical exploration of quantum mechanics.
Comparisons to quantum mechanics appear throughout the text. The extended
Hamiltonian theory with time as a coordinate is compared to Dirac's formalism of
primary phase space constraints.The chapter on relativisitic mechanics shows how to
use covariant Hamiltonian theory to write the Klein-Gordon and Dirac equations. The
chapter on Hamilton-Jacobi theory includes a discussion of the closely related Bohm
hidden variable model of quantum mechanics. Classical mechanics itself is presented
with an emphasis on methods, such as linear vector operators and dyadics, that will
familiarize the student with similar techniques in quantum theory. Several of the
current fundamental problems in theoretical physics - the development of quantum
information technology, and the problem of quantizing the gravitational field, to name
two - require a rethinking of the quantum-classical connection. Graduate students
Breparmg for research careers will find a graduate mechanics course based on this

ook to be an essential bridge between their undergraduate training and advanced
study in analytical mechanics, relativity, and guantum mechanics.
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