

数字集成电路设计

[数字集成电路设计_下载链接1](#)

著者:Hubert Kaeslin

出版者:人民邮电出版社

出版时间:201004

装帧:平装

isbn:9787115223586

《数字集成电路设计:从VLSI体系结构到CMOS制造(英文版)》从架构与算法讲起, 介绍

了功能验证、VHDL建模、同步电路设计、异步数据获取、能耗与散热、信号完整性、物理设计、设计验证等必备技术，还讲解了VLSI经济运作与项目管理，并简单阐释了CMOS技术的基础知识，全面覆盖了数字集成电路的整个设计开发过程。

《数字集成电路设计:从VLSI体系结构到CMOS制造(英文版)》既可作为高等院校微电子、电子技术等相关专业高年级师生和研究生的参考教材，也可供半导体行业工程师参考。

作者介绍:

Hubert Kaeslin

1985年于瑞士苏黎世联邦理工学院获得博士学位，现为该校微电子设计中心的负责人，具有20多年教授VLSI的丰富经验。

目录: Chapter 1 Introduction to Microelectronics 1

1.1 Economic impact 1

1.2 Concepts and terminology 4

1.2.1 The Guinness book of records point of view 4

1.2.2 The marketing point of view 5

1.2.3 The fabrication point of view 6

1.2.4 The design engineer's point of view 10

1.2.5 The business point of view 17

1.3 Design flow in digital VLSI 18

1.3.1 The Y-chart, a map of digital electronic systems 18

1.3.2 Major stages in VLSI design 19

1.3.3 Cell libraries 28

1.3.4 Electronic design automation software 29

1.4 Field-programmable logic 30

1.4.1 Configuration technologies 30

1.4.2 Organization of hardware resources 32

1.4.3 Commercial products 35

1.5 Problems 37

1.6 Appendix I: A brief glossary of logic families 38

1.7 Appendix II: An illustrated glossary of circuit-related terms 40

Chapter 2 From Algorithms to Architectures 44

2.1 The goals of architecture design 44

2.1.1 Agenda 45

2.2 The architectural antipodes 45

2.2.1 What makes an algorithm suitable for a dedicated VLSI architecture? 50

2.2.2 There is plenty of land between the architectural antipodes 53

2.2.3 Assemblies of general-purpose and dedicated processing units 54

2.2.4 Coprocessors 55

2.2.5 Application-specific instruction set processors 55

2.2.6 Configurable computing 58

2.2.7 Extendable instruction set processors 59

2.2.8 Digest 60

2.3 A transform approach to VLSI architecture design 61

2.3.1 There is room for remodelling in the algorithmic domain 62

2.3.2 ...and there is room in the architectural domain 64

2.3.3 Systems engineers and VLSI designers must collaborate 64

2.3.4 A graph-based formalism for describing processing algorithms 65

2.3.5 The isomorphic architecture 66

2.3.6 Relative merits of architectural alternatives	67
2.3.7 Computation cycle versus clock period	69
2.4 Equivalence transforms for combinational computations	70
2.4.1 Common assumptions	71
2.4.2 Iterative decomposition	72
2.4.3 Pipelining	75
2.4.4 Replication	79
2.4.5 Time sharing	81
2.4.6 Associativity transform	86
2.4.7 Other algebraic transforms	87
2.4.8 Digest	87
2.5 Options for temporary storage of data	89
2.5.1 Data access patterns	89
2.5.2 Available memory configurations and area occupation	89
2.5.3 Storage capacities	90
2.5.4 Wiring and the costs of going off-chip	91
2.5.5 Latency and timing	91
2.5.6 Digest	92
2.6 Equivalence transforms for nonrecursive computations	93
2.6.1 Retiming	94
2.6.2 Pipelining revisited	95
2.6.3 Systolic conversion	97
2.6.4 Iterative decomposition and time-sharing revisited	98
2.6.5 Replication revisited	98
2.6.6 Digest	99
2.7 Equivalence transforms for recursive computations	99
2.7.1 The feedback bottleneck	100
2.7.2 Unfolding of first-order loops	101
2.7.3 Higher-order loops	103
2.7.4 Time-variant loops	105
2.7.5 Nonlinear or general loops	106
2.7.6 Pipeline interleaving is not an equivalence transform	109
2.7.7 Digest	111
2.8 Generalizations of the transform approach	112
2.8.1 Generalization to other levels of detail	112
2.8.2 Bit-serial architectures	113
2.8.3 Distributed arithmetic	116
2.8.4 Generalization to other algebraic structures	118
2.8.5 Digest	121
2.9 Conclusions	122
2.9.1 Summary	122
2.9.2 The grand architectural alternatives from an energy point of view	124
2.9.3 A guide to evaluating architectural alternatives	126
2.10 Problems	128
2.11 Appendix I: A brief glossary of algebraic structures	130
2.12 Appendix II: Area and delay figures of VLSI subfunctions	133
Chapter 3 Functional Verification	136
3.1 How to establish valid functional specifications	137
3.1.1 Formal specification	138
3.1.2 Rapid prototyping	138
3.2 Developing an adequate simulation strategy	139
3.2.1 What does it take to uncover a design flaw during simulation?	139
3.2.2 Stimulation and response checking must occur automatically	140
3.2.3 Exhaustive verification remains an elusive goal	142

3.2.4 All partial verification techniques have their pitfalls	143
3.2.5 Collecting test cases from multiple sources helps	150
3.2.6 Assertion-based verification helps	150
3.2.7 Separating test development from circuit design helps	151
3.2.8 Virtual prototypes help to generate expected responses	153
3.3 Reusing the same functional gauge throughout the entire design cycle	153
3.3.1 Alternative ways to handle stimuli and expected responses	155
3.3.2 Modular testbench design	156
3.3.3 A well-defined schedule for stimuli and responses	156
3.3.4 Trimming run times by skipping redundant simulation sequences	159
3.3.5 Abstracting to higher-level transactions on higher-level data	160
3.3.6 Absorbing latency variations across multiple circuit models	164
3.4 Conclusions	166
3.5 Problems	168
3.6 Appendix I: Formal approaches to functional verification	170
3.7 Appendix II: Deriving a coherent schedule for simulation and test	171
Chapter 4 Modelling Hardware with VHDL	175
4.1 Motivation	175
4.1.1 Why hardware synthesis?	175
4.1.2 What are the alternatives to VHDL?	176
4.1.3 What are the origins and aspirations of the IEEE 1076 standard?	176
4.1.4 Why bother learning hardware description languages?	179
4.1.5 Agenda	180
4.2 Key concepts and constructs of VHDL	180
4.2.1 Circuit hierarchy and connectivity	181
4.2.2 Concurrent processes and process interaction	185
4.2.3 A discrete replacement for electrical signals	192
4.2.4 An event-based concept of time for governing simulation	200
4.2.5 Facilities for model parametrization	211
4.2.6 Concepts borrowed from programming languages	216
4.3 Putting VHDL to service for hardware synthesis	223
4.3.1 Synthesis overview	223
4.3.2 Data types	224
4.3.3 Registers, finite state machines, and other sequential subcircuits	225
4.3.4 RAMs, ROMs, and other macrocells	231
4.3.5 Circuits that must be controlled at the netlist level	233
4.3.6 Timing constraints	234
4.3.7 Limitations and caveats for synthesis	238
4.3.8 How to establish a register transfer-level model step by step	238
4.4 Putting VHDL to service for hardware simulation	242
4.4.1 Ingredients of digital simulation	242
4.4.2 Anatomy of a generic testbench	242
4.4.3 Adapting to a design problem at hand	245
4.4.4 The VITAL modelling standard IEEE 1076.4	245
4.5 Conclusions	247
4.6 Problems	248
4.7 Appendix I: Books and Web Pages on VHDL	250
4.8 Appendix II: Related extensions and standards	251
4.8.1 Protected shared variables IEEE 1076a	251
4.8.2 The analog and mixed-signal extension IEEE 1076.1	252
4.8.3 Mathematical packages for real and complex numbers IEEE 1076.2	253
4.8.4 The arithmetic packages IEEE 1076.3	254
4.8.5 A language subset earmarked for synthesis IEEE 1076.6	254
4.8.6 The standard delay format (SDF) IEEE 1497	254

4.8.7 A handy compilation of type conversion functions	255
4.9 Appendix III: Examples of VHDL models	256
4.9.1 Combinational circuit models	256
4.9.2 Mealy, Moore, and Medvedev machines	261
4.9.3 State reduction and state encoding	268
4.9.4 Simulation testbenches	270
4.9.5 Working with VHDL tools from different vendors	285
Chapter 5 The Case for Synchronous Design	286
5.1 Introduction	286
5.2 The grand alternatives for regulating state changes	287
5.2.1 Synchronous clocking	287
5.2.2 Asynchronous clocking	288
5.2.3 Self-timed clocking	288
5.3 Why a rigorous approach to clocking is essential in VLSI	290
5.3.1 The perils of hazards	290
5.3.2 The pros and cons of synchronous clocking	291
5.3.3 Clock-as-clock-can is not an option in VLSI	293
5.3.4 Fully self-timed clocking is not normally an option either	294
5.3.5 Hybrid approaches to system clocking	294
5.4 The dos and don'ts of synchronous circuit design	296
5.4.1 First guiding principle: Dissociate signal classes!	296
5.4.2 Second guiding principle: Allow circuits to settle before clocking!	298
5.4.3 Synchronous design rules at a more detailed level	298
5.5 Conclusions	306
5.6 Problems	306
5.7 Appendix: On identifying signals	307
5.7.1 Signal class	307
5.7.2 Active level	308
5.7.3 Signaling waveforms	309
5.7.4 Three-state capability	311
5.7.5 Inputs, outputs, and bidirectional terminals	311
5.7.6 Present state vs. next state	312
5.7.7 Syntactical conventions	312
5.7.8 A note on upper- and lower-case letters in VHDL	313
5.7.9 A note on the portability of names across EDA platforms	314
Chapter 6 Clocking of Synchronous Circuits	315
6.1 What is the difficulty in clock distribution?	315
6.1.1 Agenda	316
6.1.2 Timing quantities related to clock distribution	317
6.2 How much skew and jitter does a circuit tolerate?	317
6.2.1 Basics	317
6.2.2 Single-edge-triggered one-phase clocking	319
6.2.3 Dual-edge-triggered one-phase clocking	326
6.2.4 Symmetric level-sensitive two-phase clocking	327
6.2.5 Unsymmetric level-sensitive two-phase clocking	331
6.2.6 Single-wire level-sensitive two-phase clocking	334
6.2.7 Level-sensitive one-phase clocking and wave pipelining	336
6.3 How to keep clock skew within tight bounds	339
6.3.1 Clock waveforms	339
6.3.2 Collective clock buffers	340
6.3.3 Distributed clock buffer trees	343
6.3.4 Hybrid clock distribution networks	344
6.3.5 Clock skew analysis	345
6.4 How to achieve friendly input/output timing	346

6.4.1	Friendly as opposed to unfriendly I/O timing	346
6.4.2	Impact of clock distribution delay on I/O timing	347
6.4.3	Impact of PTV variations on I/O timing	349
6.4.4	Registered inputs and outputs	350
6.4.5	Adding artificial contamination delay to data inputs	350
6.4.6	Driving input registers from an early clock	351
6.4.7	Tapping a domain's clock from the slowest component therein	351
6.4.8	"Zero-delay" clock distribution by way of a DLL or PLL	352
6.5	How to implement clock gating properly	353
6.5.1	Traditional feedback-type registers with enable	353
6.5.2	A crude and unsafe approach to clock gating	354
6.5.3	A simple clock gating scheme that may work under certain conditions	355
6.5.4	Safe clock gating schemes	355
6.6	Summary	357
6.7	Problems	361
Chapter 7 Acquisition of Asynchronous Data 364		
7.1	Motivation	364
7.2	The data consistency problem of vectored acquisition	366
7.2.1	Plain bit-parallel synchronization	366
7.2.2	Unit-distance coding	367
7.2.3	Suppression of crossover patterns	368
7.2.4	Handshaking	369
7.2.5	Partial handshaking	371
7.3	The data consistency problem of scalar acquisition	373
7.3.1	No synchronization whatsoever	373
7.3.2	Synchronization at multiple places	373
7.3.3	Synchronization at a single place	373
7.3.4	Synchronization from a slow clock	374
7.4	Metastable synchronizer behavior	374
7.4.1	Marginal triggering and how it becomes manifest	374
7.4.2	Repercussions on circuit functioning	378
7.4.3	A statistical model for estimating synchronizer reliability	379
7.4.4	Plesiochronous interfaces	381
7.4.5	Containment of metastable behavior	381
7.5	Summary	384
7.6	Problems	384
Chapter 8 Gate- and Transistor-Level Design 386		
8.1	CMOS logic gates	386
8.1.1	The MOSFET as a switch	387
8.1.2	The inverter	388
8.1.3	Simple CMOS gates	396
8.1.4	Composite or complex gates	399
8.1.5	Gates with high-impedance capabilities	403
8.1.6	Parity gates	406
8.1.7	Adder slices	407
8.2	CMOS bistables	409
8.2.1	Latches	410
8.2.2	Function latches	412
8.2.3	Single-edge-triggered flip-flops	413
8.2.4	The mother of all flip-flops	415
8.2.5	Dual-edge-triggered flip-flops	417
8.2.6	Digest	418
8.3	CMOS on-chip memories	418
8.3.1	Static RAM	418

8.3.2 Dynamic RAM	423
8.3.3 Other differences and commonalities	424
8.4 Electrical CMOS contraptions	425
8.4.1 Snapper	425
8.4.2 Schmitt trigger	426
8.4.3 Tie-off cells	427
8.4.4 Filler cell or fillcap	428
8.4.5 Level shifters and input/output buffers	429
8.4.6 Digitally adjustable delay lines	429
8.5 Pitfalls	430
8.5.1 Busses and three-state nodes	430
8.5.2 Transmission gates and other bidirectional components	434
8.5.3 What do we mean by safe design?	437
8.5.4 Microprocessor interface circuits	438
8.5.5 Mechanical contacts	440
8.5.6 Conclusions	440
8.6 Problems	442
8.7 Appendix I: Summary on electrical MOSFET models	445
8.7.1 Naming and counting conventions	445
8.7.2 The Sah model	446
8.7.3 The Shichman–Hodges model	450
8.7.4 The alpha-power-law model	450
8.7.5 Second-order effects	452
8.7.6 Effects not normally captured by transistor models	455
8.7.7 Conclusions	456
8.8 Appendix II: The Bipolar Junction Transistor	457
Chapter 9 Energy Efficiency and Heat Removal	459
9.1 What does energy get dissipated for in CMOS circuits?	459
9.1.1 Charging and discharging of capacitive loads	460
9.1.2 Crossover currents	465
9.1.3 Resistive loads	467
9.1.4 Leakage currents	468
9.1.5 Total energy dissipation	470
9.1.6 CMOS voltage scaling	471
9.2 How to improve energy efficiency	474
9.2.1 General guidelines	474
9.2.2 How to reduce dynamic dissipation	476
9.2.3 How to counteract leakage	482
9.3 Heat flow and heat removal	488
9.4 Appendix I: Contributions to node capacitance	490
9.5 Appendix II: Unorthodox approaches	491
9.5.1 Subthreshold logic	491
9.5.2 Voltage-swing-reduction techniques	492
9.5.3 Adiabatic logic	492
Chapter 10 Signal Integrity	495
10.1 Introduction	495
10.1.1 How does noise enter electronic circuits?	495
10.1.2 How does noise affect digital circuits?	496
10.1.3 Agenda	499
10.2 Crosstalk	499
10.3 Ground bounce and supply droop	499
10.3.1 Coupling mechanisms due to common series impedances	499
10.3.2 Where do large switching currents originate?	501
10.3.3 How severe is the impact of ground bounce?	501

10.4 How to mitigate ground bounce	504
10.4.1 Reduce effective series impedances	505
10.4.2 Separate polluters from potential victims	510
10.4.3 Avoid excessive switching currents	513
10.4.4 Safeguard noise margins	517
10.5 Conclusions	519
10.6 Problems	519
10.7 Appendix: Derivation of second-order approximation	521
Chapter 11 Physical Design	523
11.1 Agenda	523
11.2 Conducting layers and their characteristics	523
11.2.1 Geometric properties and layout rules	523
11.2.2 Electrical properties	527
11.2.3 Connecting between layers	527
11.2.4 Typical roles of conducting layers	529
11.3 Cell-based back-end design	531
11.3.1 Floorplanning	531
11.3.2 Identify major building blocks and clock domains	532
11.3.3 Establish a pin budget	533
11.3.4 Find a relative arrangement of all major building blocks	534
11.3.5 Plan power, clock, and signal distribution	535
11.3.6 Place and route (P&R)	538
11.3.7 Chip assembly	539
11.4 Packaging	540
11.4.1 Wafer sorting	543
11.4.2 Wafer testing	543
11.4.3 Backgrinding and singulation	544
11.4.4 Encapsulation	544
11.4.5 Final testing and binning	544
11.4.6 Bonding diagram and bonding rules	545
11.4.7 Advanced packaging techniques	546
11.4.8 Selecting a packaging technique	551
11.5 Layout at the detail level	551
11.5.1 Objectives of manual layout design	552
11.5.2 Layout design is no WYSIWYG business	552
11.5.3 Standard cell layout	556
11.5.4 Sea-of-gates macro layout	559
11.5.5 SRAM cell layout	559
11.5.6 Lithography-friendly layouts help improve fabrication yield	561
11.5.7 The mesh, a highly efficient and popular layout arrangement	562
11.6 Preventing electrical overstress	562
11.6.1 Electromigration	562
11.6.2 Electrostatic discharge	565
11.6.3 Latch-up	571
11.7 Problems	575
11.8 Appendix I: Geometric quantities advertized in VLSI	576
11.9 Appendix II: On coding diffusion areas in layout drawings	577
11.10 Appendix III: Sheet resistance	579
Chapter 12 Design Verification	581
12.1 Uncovering timing problems	581
12.1.1 What does simulation tell us about timing problems?	581
12.1.2 How does timing verification help?	585
12.2 How accurate are timing data?	587
12.2.1 Cell delays	588

12.2.2	Interconnect delays and layout parasitics	593
12.2.3	Making realistic assumptions is the point	597
12.3	More static verification techniques	598
12.3.1	Electrical rule check	598
12.3.2	Code inspection	599
12.4	Post-layout design verification	601
12.4.1	Design rule check	602
12.4.2	Manufacturability analysis	604
12.4.3	Layout extraction	605
12.4.4	Layout versus schematic	605
12.4.5	Equivalence checking	606
12.4.6	Post-layout timing verification	606
12.4.7	Power grid analysis	607
12.4.8	Signal integrity analysis	607
12.4.9	Post-layout simulations	607
12.4.10	The overall picture	607
12.5	Conclusions	608
12.6	Problems	609
12.7	Appendix I: Cell and library characterization	611
12.8	Appendix II: Equivalent circuits for interconnect modelling	612
Chapter 13 VLSI Economics and Project Management 615		
13.1	Agenda	615
13.2	Models of industrial cooperation	617
13.2.1	Systems assembled from standard parts exclusively	617
13.2.2	Systems built around program-controlled processors	618
13.2.3	Systems designed on the basis of field-programmable logic	619
13.2.4	Systems designed on the basis of semi-custom ASICs	620
13.2.5	Systems designed on the basis of full-custom ASICs	622
13.3	Interfacing within the ASIC industry	623
13.3.1	Handoff points for IC design data	623
13.3.2	Scopes of IC manufacturing services	624
13.4	Virtual components	627
13.4.1	Copyright protection vs. customer information	627
13.4.2	Design reuse demands better quality and more thorough verification	628
13.4.3	Many existing virtual components need to be reworked	629
13.4.4	Virtual components require follow-up services	629
13.4.5	Indemnification provisions	630
13.4.6	Deliverables of a comprehensive VC package	630
13.4.7	Business models	631
13.5	The costs of integrated circuits	632
13.5.1	The impact of circuit size	633
13.5.2	The impact of the fabrication process	636
13.5.3	The impact of volume	638
13.5.4	The impact of configurability	639
13.5.5	Digest	640
13.6	Fabrication avenues for small quantities	642
13.6.1	Multi-project wafers	642
13.6.2	Multi-layer reticles	643
13.6.3	Electron beam lithography	643
13.6.4	Laser programming	643
13.6.5	Hardwired FPGAs and structured ASICs	644
13.6.6	Cost trading	644
13.7	The market side	645
13.7.1	Ingredients of commercial success	645

13.7.2 Commercialization stages and market priorities	646
13.7.3 Service versus product	649
13.7.4 Product grading	650
13.8 Making a choice	651
13.8.1 ASICs yes or no?	651
13.8.2 Which implementation technique should one adopt?	655
13.8.3 What if nothing is known for sure?	657
13.8.4 Can system houses afford to ignore microelectronics?	658
13.9 Keys to successful VLSI design	660
13.9.1 Project definition and marketing	660
13.9.2 Technical management	661
13.9.3 Engineering	662
13.9.4 Verification	665
13.9.5 Myths	665
13.10 Appendix: Doing business in microelectronics	667
13.10.1 Checklists for evaluating business partners and design kits	667
13.10.2 Virtual component providers	669
13.10.3 Selected low-volume providers	669
13.10.4 Cost estimation helps	669
Chapter 14 A Primer on CMOS Technology	671
14.1 The essence of MOS device physics	671
14.1.1 Energy bands and electrical conduction	671
14.1.2 Doping of semiconductor materials	672
14.1.3 Junctions, contacts, and diodes	674
14.1.4 MOSFETs	676
14.2 Basic CMOS fabrication flow	682
14.2.1 Key characteristics of CMOS technology	682
14.2.2 Front-end-of-line fabrication steps	685
14.2.3 Back-end-of-line fabrication steps	688
14.2.4 Process monitoring	689
14.2.5 Photolithography	689
14.3 Variations on the theme	697
14.3.1 Copper has replaced aluminum as interconnect material	697
14.3.2 Low-permittivity interlevel dielectrics are replacing silicon dioxide	698
14.3.3 High-permittivity gate dielectrics to replace silicon dioxide	699
14.3.4 Strained silicon and SiGe technology	701
14.3.5 Metal gates bound to come back	702
14.3.6 Silicon-on-insulator (SOI) technology	703
Chapter 15 Outlook	706
15.1 Evolution paths for CMOS technology	706
15.1.1 Classic device scaling	706
15.1.2 The search for new device topologies	709
15.1.3 Vertical integration	711
15.1.4 The search for better semiconductor materials	712
15.2 Is there life after CMOS?	714
15.2.1 Non-CMOS data storage	715
15.2.2 Non-CMOS data processing	716
15.3 Technology push	719
15.3.1 The so-called industry “laws” and the forces behind them	719
15.3.2 Industrial roadmaps	721
15.4 Market pull	723
15.5 Evolution paths for design methodology	724
15.5.1 The productivity problem	724
15.5.2 Fresh approaches to architecture design	727

15.6 Summary	729
15.7 Six grand challenges	730
15.8 Appendix: Non-semiconductor storage technologies for comparison	731
Appendix A Elementary Digital Electronics	732
A.1 Introduction	732
A.1.1 Common number representation schemes	732
A.1.2 Notational conventions for two-valued logic	734
A.2 Theoretical background of combinational logic	735
A.2.1 Truth table	735
A.2.2 The n-cube	736
A.2.3 Karnaugh map	736
A.2.4 Program code and other formal languages	736
A.2.5 Logic equations	737
A.2.6 Two-level logic	738
A.2.7 Multilevel logic	740
A.2.8 Symmetric and monotone functions	741
A.2.9 Threshold functions	741
A.2.10 Complete gate sets	742
A.2.11 Multi-output functions	742
A.2.12 Logic minimization	743
A.3 Circuit alternatives for implementing combinational logic	747
A.3.1 Random logic	747
A.3.2 Programmable logic array (PLA)	747
A.3.3 Read-only memory (ROM)	749
A.3.4 Array multiplier	749
A.3.5 Digest	750
A.4 Bistables and other memory circuits	751
A.4.1 Flip-flops or edge-triggered bistables	752
A.4.2 Latches or level-sensitive bistables	755
A.4.3 Unclocked bistables	756
A.4.4 Random access memories (RAMs)	760
A.5 Transient behavior of logic circuits	761
A.5.1 Glitches, a phenomenological perspective	762
A.5.2 Function hazards, a circuit-independent mechanism	763
A.5.3 Logic hazards, a circuit-dependent mechanism	764
A.5.4 Digest	765
A.6 Timing quantities	766
A.6.1 Delay quantities apply to combinational and sequential circuits	766
A.6.2 Timing conditions apply to sequential circuits only	768
A.6.3 Secondary timing quantities	770
A.6.4 Timing constraints address synthesis needs	771
A.7 Microprocessor input/output transfer protocols	771
A.8 Summary	773
Appendix B Finite State Machines	775
B.1 Abstract automata	775
B.1.1 Mealy machine	776
B.1.2 Moore machine	777
B.1.3 Medvedev machine	778
B.1.4 Relationships between finite state machine models	779
B.1.5 Taxonomy of finite state machines	782
B.1.6 State reduction	783
B.2 Practical aspects and implementation issues	785
B.2.1 Parasitic states and symbols	785
B.2.2 Mealy-, Moore-, Medvedev-type, and combinational output bits	787

B.2.3 Through paths and logic instability	787
B.2.4 Switching hazards	789
B.2.5 Hardware costs	790
B.3 Summary	793
Appendix C VLSI Designer's Checklist	794
C.1 Design data sanity	794
C.2 Pre-synthesis design verification	794
C.3 Clocking	795
C.4 Gate-level considerations	796
C.5 Design for test	797
C.6 Electrical considerations	798
C.7 Pre-layout design verification	799
C.8 Physical considerations	800
C.9 Post-layout design verification	800
C.10 Preparation for testing of fabricated prototypes	801
C.11 Thermal considerations	802
C.12 Board-level operation and testing	802
C.13 Documentation	802
Appendix D Symbols and constants	804
D.1 Mathematical symbols used	804
D.2 Abbreviations	807
D.3 Physical and material constants	808
References	811
Index	832
• • • • • (收起)	

[数字集成电路设计_下载链接1](#)

标签

电子

VLSI

数字集成电路

全定制

IC

EE

CMOS

评论

[数字集成电路设计 下载链接1](#)

书评

这本书是Digital Integrated Circuit Design:From VLSI Architectures to CMOS Fabrication的中文版，数字集成电路设计：从VLSI体系结构到CMOS制造。洋洋洒洒600多页，100多块钱。但是我开始看了三天了。翻译简直就像谷歌翻译的一样，我专门下载了英文电子版来对照。原版是很...

[数字集成电路设计 下载链接1](#)