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译 者 序

随着多核时代的到来，原本只属于高端应用的并行化编程也随之变得越来越普及。可以
说，在处理器平台多核的大潮中，单纯的芯片制造工艺和技术已经不足以体现和发挥出
多核所带来的更高处理能力以及性能优势，具备在多核环境中多线程工作的软件将会成
为发挥多核高效率的保证。

多核技术在单个封装内集成了更多的核，为实现真正并行提供了物质基础。那么究竟如
何设计和编写并行应用程序才能充分发挥多核架构的资源优势？这正是软件开发人员所
要解决的问题。本书从这一需求出发，期望为面向多核架构设计和编写并行应用程序的
开发人员提供一些力所能及的帮助。

在翻译本书的过程中，我们的切身体会就是本书并不仅仅是简单地介绍如何编写多核程
序，更重要的是为程序开发人员提供了如何顺利从命令式顺序编程迁移到声明式并行编
程的方法。作者以多个应用实例贯穿本书，一步步引导读者领会如何从问题陈述逐步精
化，最终实现并行程序。
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本书由齐宁和董泽惠翻译完成，Be
Flying工作室(http://blog.csdn.net/be_flying)负责人肖国尊负责翻译质量和进度的控制
管理。书中文字和内容力求忠实原著，但限于译者水平和时间紧迫，翻译过程中难免出
现不妥之处和错误，敬请广大读者批评指正。

前 言

多核革命即将到来。并行处理不再是超级计算机或集群的专属领域，入门级服务器乃至
基本的开发工作站都拥有硬件级和软件级并行处理的能力。问题是这对于软件开发人员
意味着什么？对软件开发过程会有怎样的影响？在谁拥有速度最快的计算机的竞争中，
芯片生产商更倾向于在单独的芯片上放置多个处理器，而不是提高处理器的速度。迄今
为止，软件开发人员尚能依赖于新的处理器，在不对软件做出任何实际改进的情况下提
高软件的速度，但是这样的情况将成为过去。为了提高总体系统性能，计算机供应商已
经决定增加更多的处理器，而不是提高时钟频率。这意味着如果软件开发人员希望应用
程序从下一个新的处理器受益，就必须对应用程序进行修改以利用多处理器计算机。

尽管顺序编程和单核应用程序开发仍会有一席之地，但软件开发将向多线程和多进程转
变。曾经仅被理论计算机科学家和大学学术界所关注的并行编程技术，现在正处于为大
多数人所接受的过程中。多核应用程序设计和开发的思想如今成为人们关注的主流。

学习多核编程

本书使用一般软件开发人员能够理解的术语介绍多核编程的基本知识。为读者介绍了为
多处理器和多线程体系结构进行编程的基础知识，对并行处理和软件并发的概念进行了
实用的介绍。本书介绍的是深奥的、不易理解的并行编程技术，但将使用一种简单、可
理解的方式来介绍它们。我们介绍了并发编程和同步的缺陷与陷阱以及应对之策，对多
处理和多线程模型进行了直截了当的讨论。本书提供了大量的编程实例，示范了如何实
现成功的多核编程。本书还包含了调试及测试多核编程的方法与技术。最后，我们示范
了如何使用跨平台技术来利用处理器的具体特性。

不同的视角

本书的内容是为对多核编程和应用程序开发有着不同切入点的广大读者设计的。本书的
读者包含但不限于：

● 库及工具制作人员

● 操作系统程序员

● 内核开发人员

● 数据库服务器及应用服务器的设计人员及实现人员

● 科学应用程序员以及使用计算密集型应用程序的用户

● 应用程序开发人员

● 系统程序员

每组人员都会从不同的视角来了解多核计算机。有些人关心的是使用自底向上的方法，
需要开发利用特定硬件和特定供应商的特性的软件。对于上述人员而言，他们希望更加
详尽地介绍多线程处理的知识。其他人员可能对自顶向下的方法感兴趣，他们不希望为
并发任务同步或线程安全的细节费心，而是倾向于使用高级库和工具来完成工作。还有
一些人需要混合使用自底向上和自顶向下的方法。本书提供了对多核编程的多种视角的



介绍，涵盖了自底向上和自顶向下的方法。

解决方案是多范型方法

首先，我们承认不是每个软件解决方案都需要多处理或多线程。有些软件解决方案通过
使用顺序编程技术能够更好地实现(即使目标平台是多核的)。我们的方法是以解决方案
和模型作为驱动。首先，针对问题开发出模型或解决方案。如果解决方案要求某些指令
、过程或任务并发地执行，那么就决定了最好使用哪组技术。这个方法同强迫解决方案
或模型去适合一些预先选择的库或开发工具的方法相反。技术应当遵从解决方案。尽管
本书讨论库和开发工具，但并不偏向任何具体生产商库或工具集。尽管书中包含了利用
特定硬件平台的实例，但我们依赖跨平台方法，使用POSIX标准操作系统调用和库，并
且仅使用国际化C++标准所支持的C++特性。

面对多处理和多线程中的挑战和障碍，我们倡导组件方法。主要的目的是利用框架类作
为并发的构建块。框架类被面向对象互斥量(mutex)、信号量(semaphore)、管道(pipe)
、队列(queue)和套接字(socket)所支持。通过使用接口类，显著降低了任务同步和通信
的复杂度。在我们的多线程和多处理应用程序中，控制机制主要是agent驱动。这意味
着在本书中，您将看到应用程序架构支持软件开发的多范型(multiple-paradigm)方法。

我们对组件实现使用面向对象编程技术，对控制机制主要使用面向agent编程技术。面
向agent编程的思想有时被逻辑编程技术支持。随着处理器上可用内核数目的增加，软
件开发模型将会越发地依赖面向agent编程和逻辑编程。本书包含了对软件开发的这种
多范型方法的简介。

为何使用C++

事实上，每个平台和操作环境中均有可用的C++编译器。ANSI(American National
Standards Institute，美国国家标准协会)和ISO(International Organization for
Standardization，国际标准化组织)已经为C++语言和它的库定义了标准。C++语言具有
可靠的开源实现以及商业实现，并且已经被全世界的研究人员、设计人员和专业开发人
员所广泛接受。C++语言被用于解决各种各样的问题，从设备驱动到大规模的工业应用
。C++语言支持软件开发的多范型方法。在C++中，我们可以无缝地实现面向对象设计
、逻辑编程设计和面向agent设计。我们还可以在必要时使用结构化编程技术或低级编
程技术。这种灵活性正是新的多核技术所需要加以利用的。此外，C++编译器为软件开
发人员提供了多核处理器的新特性的直接接口。

UML图

本书中的很多图使用了UML(Unified Modeling
Language，统一建模语言)标准。特别是使用活动图、部署图、类图和状态图来描述重
要的并发架构和类关系。尽管UML的知识不是必需的，但熟悉它会对工作和学习有所帮
助。

支持的开发环境

本书中的实例均使用ISO标准C/C++开发。这意味着实例和程序能够在所有主要环境中
进行编译。完整程序中仅使用POSIX兼容的操作系统调用或库，因此，这些程序能够移
植到所有兼容POSIX的操作系统环境中。本书中的实例和程序在配有UltraSparc T1
multiprocessor、Intel Core 2 Duo、IBM Cell Broadband Engine和AMD Dual Core
Opteron处理器的SunFire 2000上都进行了测试。

程序概要

本书中的多数完整程序均伴有一个程序概要(program



profile)。概要包含实现细节，如必需的头文件、必需的库、编译指令和链接指令。概
要还包括一个注释部分，包含执行程序时需要注意的任何特殊考虑。所有的代码仅用于
说明目的。

测试及代码可靠性

尽管本书中的所有实例和应用程序均为了确保正确性而经过了测试，但我们并不保证书
中包含的程序没有缺陷或错误，或者同任何特定标准或适销性相一致，或满足您的任何
特定应用的要求。您不应依赖于它们来解决这样的问题，即问题的不正确的解决方案可
能会导致人员伤害或财产损失。作者和出版商不对使用本书中的实例、程序或应用程序
所导致的直接或间接损害承担任何责任。

约定

为了帮助您更好地了解本书的内容，我们在书中使用了如下的约定。

对于正文中的样式：

● 我们对新的术语和重要的词在引入它们时进行了强调。

● 我们采用类似如下的方式显示组合键：Ctrl+A。

● 我们以两种不同的方式显示代码：

We use a monofont type with no highlighting for most code examples.

We use gray highlighting to emphasize code that s particularly important

in the present context.

本书中既包含程序清单(code listing)，又包含代码示例(code example)。

●
程序清单是完整的、可执行的程序。如前所述，多数情况下，它们会伴有一个程序概要
，它会告诉您程序编写时的环境，并给出编译指令和链接指令的描述，等等。

●
代码示例是一些片断，不加修改是不能够运行的。它们用来集中展示某些内容如何被调
用或使用。

源代码

在您完成本书中的例子时，您可以选择手工输入所有代码或使用伴随本书的源代码文件
。本书中所使用的所有源代码可以从http://www.tupwk.com.cn/downpage下载，也可
以从http://www.wrox.com下载。访问到该网站之后，只要找到本书的书名(使用Search
输入框或使用一个书名列表)，然后在本书的详情页面上单击Download
Code链接来得到本书的所有源代码。

注意：

由于很多书的书名很类似，最简单的查找方式是通过ISBN，本书的ISBN为978-0-470-28
962-4。

一旦下载了代码，只需要使用您最喜欢的压缩工具对它进行解压。或者，您可以转到W



rox的代码下载主页面，网址为http://www.wrox.com/dynamic/books/download.aspx
，查看本书及所有Wrox书籍的可用代码。

勘误表

我们尽全力确保正文或代码中没有错误。然而人无完人，错误总会发生。如果您在我们
的书中发现了错误，例如拼写错误或错误的代码段，我们将会非常感激您的反馈。通过
递交勘误，您可能会帮助另一名读者避免数小时的受挫，同时，也能帮我们提供质量更
高的书籍。

为了找到本书的勘误页面，请访问http://www.wrox.com并通过Search输入框或根据书
名列表找到本书的书名。然后，在本书的详情页面上，单击Book
Errata链接。在这个页面上您可以看到所有已经为本书提交的并由Wrox编辑发布的勘误
。

如果在Book
Errata页上没有找到您所发现的错误，请将错误发送至wkservice@vip.163.com。我们
将会查看信息，如果情况属实，则会发布消息到本书的勘误页，并在本书的后续版本中
做出修订。

p2p.wrox.com

如果您希望同作者和本书其他读者进行讨论，可以加入到http://p2p.wrox.com上的P2P
论坛。该论坛是一个基于Web的系统，您可以在论坛中发布同Wrox书籍及相关技术有
关的消息，并且可以同其他读者和技术用户交流。论坛提供了订阅特性，可以将论坛上
发布的您所感兴趣的话题通过E-mail发送给您。论坛中有Wrox作者、编辑、其他行业专
家以及读者。

在http://p2p.wrox.com上，您不仅可以找到许多帮助您阅读本书的不同的论坛，而且
还可以开发自己的应用程序。要想加入论坛，应执行下列步骤：

(1) 进入http://p2p.wrox.com并单击Register链接。

(2) 阅读使用条款并单击Agree按钮。

(3)
填写加入论坛所要求的信息以及您希望提供的其他可选信息，然后单击Submit按钮。

(4) 您将会收到一封电子邮件，其中的内容描述了如何验证您的账号并完成加入过程。

注意：

即使不加入P2P，您也可以阅读论坛中的消息，但是如果您希望发布自己的消息，则必
须加入P2P。

一旦加入P2P之后，您可以发布新的消息并回复其他用户发布的消息。您可以在任何时
候阅读Web上的消息。如果您希望特定论坛的新的消息以电子邮件的形式发送给您，可
单击论坛列表中论坛名字旁边的Subscribe to this Forum按钮。

要想知道更多关于如何使用Wrox P2P的信息，可以阅读P2P
FAQ中关于论坛软件如何工作以及很多关于P2P和Wrox书籍的其他常见问题的答案。要
想阅读FAQ，可单击P2P页面中的FAQ链接。
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