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The amount of algebraic topology a graduate student specializing in topology must
learn can be intimidating. Moreover, by their second year of graduate studies, students
must make the transition from understanding simple proofs line-by-line to
understanding the overall structure of proofs of difficult theorems.

To help students make this transition, the material in this book is presented in an
increasingly sophisticated manner. It is intended to bridge the gap between algebraic
and geometric topolo%y, both by providing the algebraic tools that a geometric
topologist needs and by concentrating on those areas of algebraic topology that are
geometrically motivated.

Prerequisites for using this book include basic set-theoretic topology, the definition of
CW-complexes, some knowledge of the fundamental group/covering space theory,
and the construction of singular homology. Most of this material is briefly reviewed at
the beginning of the book.

The topics discussed by the authors include typical material for first- and second-year
graduate courses. The core of the exposition consists of chapters on homotopy groups
and on spectral sequences. There is also material that would interest students o
geometric topology (homology with local coefficients and obstruction theory) and
algebraic topology (spectra and generalized homology), as well as preparation for
more advanced topics such as algebraic K-theory and the s-cobordism theorem.

A unique feature of the book is the inclusion, at the end of each chapter, of several
projects that require students to present proofs of substantial theorems and to write
notes accompanying their explanations. Working on these projects allows students to
grapple with the " “big picture” , teaches them how to give mathematical lectures, and
prepares them for participating in research seminars.

The book is designed as a textbook for graduate students studying algebraic and
Eeometrictopology and homotopy theory. It will also be useful for students from other
lelds such as differential geometry, algebraic geometry, and homological algebra. The
exposition in the text is clear; special cases are presented over complex general
statements.
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